Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612749

RESUMEN

A large amount of primary energy is lost due to friction, and the study of new additive materials to improve friction performance is in line with the concept of low carbon. Carbon nanotubes (CNTs) have advantages in drag reduction and wear resistance with their hollow structure and self-lubricating properties. This review investigated the mechanism of improving friction properties of blocky composites (including polymer, metal, and ceramic-based composites) with CNTs' incorporation. The characteristic tubular structure and the carbon film make low wear rate and friction coefficient on the surface. In addition, the effect of CNTs' aggregation and interfacial bond strength on the wear resistance was analyzed. Within an appropriate concentration range of CNTs, the blocky composites exhibit better wear resistance properties. Based on the differences in drag reduction and wear resistance in different materials and preparation methods, further research directions of CNTs have been suggested.


Asunto(s)
Nanotubos de Carbono , Cerámica , Fricción , Polímeros , Programas Informáticos
2.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408883

RESUMEN

As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed.


Asunto(s)
Metales , Polímeros , Electrodos , Iones , Tecnología
3.
Mar Drugs ; 18(7)2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708476

RESUMEN

There are a large number of fouling organisms in the ocean, which easily attach to the surface of ships, oil platforms and breeding facilities, corrode the surface of equipment, accelerate the aging of equipment, affect the stability and safety of marine facilities and cause serious economic losses. Antifouling coating is an effective method to prevent marine biological fouling. Traditional organic tin and copper oxide coatings are toxic and will contaminate seawater and destroy marine ecology and have been banned or restricted. Environmentally friendly antifouling coatings have become a research hotspot. Among them, the use of natural biological products with antifouling activity as antifouling agents is an important research direction. In addition, some fouling release coatings without antifoulants, biomimetic coatings, photocatalytic coatings and other novel antifouling coatings have also developed rapidly. On the basis of revealing the mechanism of marine biofouling, this paper reviews the latest research strategies to develop environmentally friendly marine antifouling coatings. The composition, antifouling characteristics, antifouling mechanism and effects of various coatings were analyzed emphatically. Finally, the development prospects and future development directions of marine antifouling coatings are forecasted.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Tecnología Química Verde , Plaguicidas/farmacología , Polímeros/farmacología , Navíos , Organismos Acuáticos/crecimiento & desarrollo , Plaguicidas/química , Polímeros/química , Agua de Mar/microbiología , Propiedades de Superficie , Microbiología del Agua
4.
Artículo en Inglés | MEDLINE | ID: mdl-31343373

RESUMEN

The resuspension of indoor particulate matters caused by people indoor walking could affect indoor air quality and human health. Therefore, it is particularly important to study the resuspension rules of the particulate matters in different indoor environments. The influence of the ground material and the relative humidity on resuspension of the particulate matters were investigated under three kinds of ground materials and three different relative humidity. Results showed that different relative humidity and different ground materials had different effects on the mass concentration of the particulate matters. In addition, different particle sizes had diverse influence on the mass concentration. Compared with low-level loop pile carpet and shaggy carpet, hardwood floor was more conductive to human health which was less likely to cause the resuspension of the particulate matters. At the same time, relative humidity had a great influence on the resuspension of the particulate matters. With the increase of relative humidity, the resuspension rate of fine particulate matters decreased.


Asunto(s)
Contaminación del Aire Interior/análisis , Pisos y Cubiertas de Piso , Humedad , Material Particulado/análisis , Caminata/fisiología , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Tamaño de la Partícula
5.
Appl Bionics Biomech ; 2022: 4442417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35506045

RESUMEN

In order to improve the antiwear characteristics of the double-vane self-priming pump, the surface structure of the Scapharca subcrenata was extracted and reconstructed according to bionic principles. Three types of nonsmooth surface models were established at the outlet end of the suction surface of the vanes, which is the most severely worn in the double-vane pump. The external characteristics, pressure field distribution, wear area distribution, and wear degree of the volute and vanes at different concentrations of nonsmooth vane structure were investigated by numerical simulation to reveal the mechanism of the nonsmooth surface structure of the wear characteristics of the vanes. The results show that the head and efficiency of pumps with four different vanes decrease and the average wear rate increases as the particle concentration increases. The different vane structures have a very small effect on the wear resistance of the volute, but a larger effect on vane wear. The circular nonsmooth surface structure, which reduces the low pressure area of the inlet section of the impeller while ensuring a smaller drop in head and efficiency, produces the best antiwear effect and improves the antiwear performance of the double-vane pump.

6.
Appl Bionics Biomech ; 2022: 4485365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321354

RESUMEN

With the development of science and technology, energy consumption and demand continue to increase, and energy conservation and consumption reduction have become the primary issue facing the world. Improving the energy efficiency of ships not only helps reduce fuel consumption but also reduces carbon dioxide emissions, which is an important guarantee for the green development of the ocean and the maintenance of ecological balance. Through natural selection and adaptation to the environment after evolution, the body surface of organisms generates a variety of ways to resist adhesion and resistance of Marine organisms. Through the study of fish organisms, it is found that the body surface of general fish has mucus, which can effectively reduce the friction resistance of the body surface of fish subjected to seawater. In addition, the grooves on the body surface also help to reduce the resistance between swimming organisms and fluids. Based on the principle of bionics, the drag reduction characteristics and mechanism of fish surface mucus were analyzed. The drag reduction mechanism of bionic nonsmooth surface is analyzed from the aspect of body surface structure. On the basis of the two approaches, the characteristics and mechanism of slime and groove codrag reduction on the surface of Marine organisms were discussed in depth, so as to obtain a better new drag reduction method and provide reference for subsequent related research.

7.
Sci Prog ; 103(1): 36850419874230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31829859

RESUMEN

Based on the biological characteristics of earthworm, the dorsal pore jet parameters were analyzed to establish elbow erosion model. The discrete phase model and standard k-ε turbulence model were used to carry on numerical simulation of the erosion characteristics and study the mechanism of improving elbow erosion characteristics. The results showed that the most serious erosion area was the elbow lower surface, while bionic earthworm dorsal pore jet could significantly reduce the erosion rate of this area, thereby reducing the overall erosion rate. When the jet velocity was the same, the smaller the jet distance, the lower the erosion rate would be. With the increase of the jet velocity, the erosion rate decreased first and then increased. When the jet distance was 0.5 times the elbow diameter and the jet velocity was 0.3 times the flow velocity, the erosion rate was the lowest (decreased by 79.29%). When the jet velocity was less than 0.5 m·s-1, low-velocity strips formed at elbow lower surface due to the jet and reduced the kinetic energy of the solid particles near the wall; when the jet velocity was greater than 0.2 times the flow velocity, vortex cushion effect formed, therefore reduced the erosion rate significantly.


Asunto(s)
Oligoquetos , Animales , Biónica , Simulación por Computador , Codo
8.
Materials (Basel) ; 13(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963432

RESUMEN

Polymer additives and surfactants as drag reduction agents have been widely used in the field of fluid drag reduction. Polymer additives can reduce drag effectively with only a small amount, but they degrade easily. Surfactants have an anti-degradation ability. This paper categorizes the mechanism of drag reducing agents and the influencing factors of drag reduction characteristics. The factors affecting the degradation of polymer additives and the anti-degradation properties of surfactants are discussed. A mixture of polymer additive and surfactant has the characteristics of high shear resistance, a lower critical micelle concentration (CMC), and a good drag reduction effect at higher Reynolds numbers. Therefore, this paper focuses more on a drag reducing agent mixed with a polymer and a surfactant, including the mechanism model, drag reduction characteristics, and anti-degradation ability.

9.
Appl Bionics Biomech ; 2016: 4915974, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27022235

RESUMEN

In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA