Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 625(7995): 459-462, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191936

RESUMEN

A new class of extragalactic astronomical sources discovered in 2021, named odd radio circles (ORCs)1, are large rings of faint, diffuse radio continuum emission spanning approximately 1 arcminute on the sky. Galaxies at the centres of several ORCs have photometric redshifts of z ≃ 0.3-0.6, implying physical scales of several 100 kpc in diameter for the radio emission, the origin of which is unknown. Here we report spectroscopic data on an ORC including strong [O II] emission tracing ionized gas in the central galaxy of ORC4 at z = 0.4512. The physical extent of the [O II] emission is approximately 40 kpc in diameter, larger than expected for a typical early-type galaxy2 but an order of magnitude smaller than the large-scale radio continuum emission. We detect an approximately 200 km s-1 velocity gradient across the [O II] nebula, as well as a high velocity dispersion of approximately 180 km s-1. The [O II] equivalent width (approximately 50 Å) is extremely high for a quiescent galaxy. The morphology, kinematics and strength of the [O II] emission are consistent with the infall of shock ionized gas near the galaxy, following a larger, outward-moving shock. Both the extended optical and radio emission, although observed on very different scales, may therefore result from the same dramatic event.

2.
Nature ; 574(7780): 643-646, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666723

RESUMEN

Ninety per cent of baryons are located outside galaxies, either in the circumgalactic or intergalactic medium1,2. Theory points to galactic winds as the primary source of the enriched and massive circumgalactic medium3-6. Winds from compact starbursts have been observed to flow to distances somewhat greater than ten kiloparsecs7-10, but the circumgalactic medium typically extends beyond a hundred kiloparsecs3,4. Here we report optical integral field observations of the massive but compact galaxy SDSS J211824.06+001729.4. The oxygen [O II] lines at wavelengths of 3726 and 3729 angstroms reveal an ionized outflow spanning 80 by 100 square kiloparsecs, depositing metal-enriched gas at 10,000 kelvin through an hourglass-shaped nebula that resembles an evacuated and limb-brightened bipolar bubble. We also observe neutral gas phases at temperatures of less than 10,000 kelvin reaching distances of 20 kiloparsecs and velocities of around 1,500 kilometres per second. This multi-phase outflow is probably driven by bursts of star formation, consistent with theory11,12.

3.
Nature ; 489(7416): 406-8, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22996554

RESUMEN

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA