RESUMEN
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Simportadores/metabolismo , Animales , Membrana Celular/metabolismo , Neuronas GABAérgicas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsis , Transmisión Sináptica/fisiología , Cotransportadores de K ClRESUMEN
Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.
Asunto(s)
Conducta de Enfermedad , Microglía , Animales , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Receptor de Serotonina 5-HT2B/genética , Serotonina , Pérdida de PesoRESUMEN
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.
Asunto(s)
Hipocampo/metabolismo , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/ultraestructura , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Neuronas/ultraestructuraRESUMEN
Serotonin is a neurotransmitter widely conserved from ancient organisms lacking nervous systems through man, and its presence precedes the appearance of nervous systems on both developmental and evolutionary time scales. Serotonin receptor subtypes diversified approximately at the time period during which vertebrates diverged from invertebrates. The biological and clinical importance of serotonin receptors, may benefit from studies on their evolution. Although potentially informative about their pathophysiological functions, reviews on this topic are sparse. Several observations support basic functions mediated by serotonin, both in periphery and central nervous system. In particular, 5-HT2B receptors have been implicated in embryonic development, including cell proliferation, survival, and/or differentiation, in either neural crest cell derivatives, myeloid cell lineage, or heart embryogenesis. In this review, we collected existing data about the genomic association between the RPN2 proteasome subunit gene Psmd1 and the 5-HT2B receptor gene Htr2b. We discuss about the possibility that, during genome duplications, a single copy of this pair of genes has been conserved, suggesting a strong selective pressure. Many basic physiological functions in which serotonin system is involved could be linked to the early association of these two genes in pre-vertebrates. Their evolutionary association highlights the possibility that the 5-HT2B receptor gene, Htr2b, is the common ancestor of 5-HT2A/2B/2C-receptor subfamily. Disentangling these possibilities could bring new understanding of the respective importance of these receptors in pathophysiology of serotonin.
Asunto(s)
Receptores de Serotonina/fisiología , Animales , Evolución Molecular , Genómica , Humanos , Complejo de la Endopetidasa Proteasomal/fisiología , Serotonina/metabolismoRESUMEN
Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.
Asunto(s)
Neurogénesis/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Ratones , Ratones Mutantes , Microscopía Electrónica de Transmisión , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
The serotonin receptor subtypes 2 comprise 5-HT2A, 5-HT2B, and 5-HT2C, which are Gαq-coupled receptors and display distinct pharmacological properties. Although co-expressed in some brain regions and involved in various neurological disorders, their functional interactions have not yet been studied. We report that 5-HT2 receptors can form homo- and heterodimers when expressed alone or co-expressed in transfected cells. Co-immunoprecipitation and bioluminescence resonance energy transfer studies confirmed that 5-HT2C receptors interact with either 5-HT2A or 5-HT2B receptors. Although heterodimerization with 5-HT2C receptors does not alter 5-HT2C Gαq-dependent inositol phosphate signaling, 5-HT2A or 5-HT2B receptor-mediated signaling was totally blunted. This feature can be explained by a dominance of 5-HT2C on 5-HT2A and 5-HT2B receptor binding; in 5-HT2C-containing heterodimers, ligands bind and activate the 5-HT2C protomer exclusively. This dominant effect on the associated protomer was also observed in neurons, supporting the physiological relevance of 5-HT2 receptor heterodimerization in vivo Accordingly, exogenous expression of an inactive form of the 5-HT2C receptor in the locus ceruleus is associated with decreased 5-HT2A-dependent noradrenergic transmission. These data demonstrate that 5-HT2 receptors can form functionally asymmetric heterodimers in vitro and in vivo that must be considered when analyzing the physiological or pathophysiological roles of serotonin in tissues where 5-HT2 receptors are co-expressed.
Asunto(s)
Locus Coeruleus/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Transmisión Sináptica/fisiología , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Masculino , Ratones , Multimerización de Proteína , Receptores de Serotonina 5-HT2/genéticaRESUMEN
Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons.
Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Simportadores/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Relación Dosis-Respuesta a Droga , Doxiciclina/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Exocitosis/efectos de los fármacos , Exocitosis/genética , Hipocampo/citología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Simportadores/genética , Tiazoles/antagonistas & inhibidores , Tiazoles/farmacología , Tioglicolatos/antagonistas & inhibidores , Tioglicolatos/farmacología , Cotransportadores de K ClRESUMEN
Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.
Asunto(s)
Enfermedades Cerebelosas/genética , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Oftalmopatías/genética , Enfermedades Renales/genética , Proteínas/genética , Animales , Niño , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Mutantes , Mutación Puntual , SíndromeRESUMEN
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Asunto(s)
Membrana Celular/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Transmisión Sináptica , Actinas/metabolismo , Animales , Calcio/metabolismo , Calpaína/metabolismo , Células Cultivadas , Cloruros/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Homeostasis , Mutación , Neuronas/fisiología , Polimerizacion , Transporte de Proteínas , Proteolisis , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Sinapsis/metabolismo , Sinapsis/fisiologíaRESUMEN
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family.
Asunto(s)
Receptor de Serotonina 5-HT2B/genética , Secuencia de Aminoácidos , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia , Células COS , Proliferación Celular , Chlorocebus aethiops , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Polimorfismo Genético , Ensayo de Unión Radioligante , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de SeñalRESUMEN
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Asunto(s)
Simportadores , Animales , Ratones , Simportadores/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Na-K-2Cl cotransporter 1 (NKCC1) regulates chloride influx in neurons and thereby GABAA receptor activity in normal and pathological conditions. Here, we characterized in hippocampal neurons the membrane expression, distribution and dynamics of exogenous NKCC1a and NKCC1b isoforms and compared them to those of the chloride extruder K-Cl cotransporter 2 (KCC2). We found that NKCC1a and NKCC1b behave quite similarly. NKCC1a/1b but not KCC2 are present along the axon initial segment where they are confined. Moreover, NKCC1a/1b are detected in the somato-dendritic compartment at a lower level than KCC2, where they form fewer, smaller and less compact clusters at perisynaptic and extrasynaptic sites. Interestingly, ~60% of dendritic clusters of NKCC1a/1b are colocalized with KCC2. They are larger and brighter than those devoid of KCC2, suggesting a particular NKCC1a/1b-KCC2 relationship. In agreement with the reduced dendritic clustering of NKCC1a/1b compared with that of KCC2, NKCC1a/1b are more mobile on the dendrite than KCC2, suggesting weaker cytoskeletal interaction. NKCC1a/b are confined to endocytic zones, where they spend more time than KCC2. However, they spend less time in these compartments than at the synapses, suggesting that they can rapidly leave endocytic zones to increase the membrane pool, which can happen in pathological conditions. Thus, NKCC1a/b have different membrane dynamics and clustering from KCC2, which helps to explain their low level in the neuronal membrane, while allowing a rapid increase in the membrane pool under pathological conditions.
Asunto(s)
Cloruros , Simportadores , Cloruros/metabolismo , Simportadores/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismoRESUMEN
Many psychiatric diseases have been associated with serotonin (5-HT) neuron dysfunction. The firing of 5-HT neurons is known to be under 5-HT1A receptor-mediated autoinhibition, but functional consequences of coexpressed receptors are unknown. Using co-immunoprecipitation, BRET, confocal, and super-resolution microscopy in hippocampal and 5-HT neurons, we present evidence that 5-HT1A and 5-HT2B receptors can form heterodimers and co-cluster at the plasma membrane of dendrites. Selective agonist stimulation of coexpressed 5-HT1A and 5-HT2B receptors prevents 5-HT1A receptor internalization and increases 5-HT2B receptor membrane clustering. Current clamp recordings of 5-HT neurons revealed that 5-HT1A receptor stimulation of acute slices from mice lacking 5-HT2B receptors in 5-HT neurons increased their firing activity trough Ca2+-activated potassium channel inhibition compared to 5-HT neurons from control mice. This work supports the hypothesis that the relative expression of 5-HT1A and 5-HT2B receptors tunes the neuronal excitability of serotonergic neurons through potassium channel regulation.
RESUMEN
Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attractive guidance cues for oligodendrocyte precursor cells, respectively. We previously reported their increased expression in experimental demyelination and in multiple sclerosis. Here, we show that adult oligodendrocyte precursor cells, like their embryonic counterparts, express class 3 semaphorin receptors, neuropilins and plexins and that neuropilin expression increases after demyelination. Using gain and loss of function experiments in an adult murine demyelination model, we demonstrate that semaphorin 3A impairs oligodendrocyte precursor cell recruitment to the demyelinated area. In contrast, semaphorin 3F overexpression accelerates not only oligodendrocyte precursor cell recruitment, but also remyelination rate. These data open new avenues to understand remyelination failure and promote repair in multiple sclerosis.
Asunto(s)
Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Semaforinas/metabolismo , Médula Espinal/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Movimiento Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Proteína Básica de Mielina/metabolismo , Estadísticas no ParamétricasRESUMEN
The efficacy of GABAergic synapses relies on the number of postsynaptic GABAA receptors (GABAARs), which is regulated by a diffusion capture mechanism. Here, we report that the conformational state of GABAARs influences their membrane dynamics. Indeed, pharmacological and mutational manipulations of receptor favoring active or desensitized states altered GABAAR diffusion leading to the disorganization of GABAAR subsynaptic domains and gephyrin scaffold, as detected by super-resolution microscopy. Active and desensitized receptors were confined to perisynaptic endocytic zones, and some of them were further internalized. We propose that following their activation or desensitization, synaptic receptors rapidly diffuse at the periphery of the synapse where they remain confined until they switch back to a resting state or are internalized. We speculate that this allows a renewal of activatable receptors at the synapse, contributing to maintain the efficacy of the synaptic transmission, in particular on sustained GABA transmission.
RESUMEN
Subcortical heterotopias are malformations associated with epilepsy and intellectual disability, characterized by the presence of ectopic neurons in the white matter. Mouse and human heterotopia mutations were identified in the microtubule-binding protein Echinoderm microtubule-associated protein-like 1, EML1. Further exploring pathological mechanisms, we identified a patient with an EML1-like phenotype and a novel genetic variation in DLGAP4. The protein belongs to a membrane-associated guanylate kinase family known to function in glutamate synapses. We showed that DLGAP4 is strongly expressed in the mouse ventricular zone (VZ) from early corticogenesis, and interacts with key VZ proteins including EML1. In utero electroporation of Dlgap4 knockdown (KD) and overexpression constructs revealed a ventricular surface phenotype including changes in progenitor cell dynamics, morphology, proliferation and neuronal migration defects. The Dlgap4 KD phenotype was rescued by wild-type but not mutant DLGAP4. Dlgap4 is required for the organization of radial glial cell adherens junction components and actin cytoskeleton dynamics at the apical domain, as well as during neuronal migration. Finally, Dlgap4 heterozygous knockout (KO) mice also show developmental defects in the dorsal telencephalon. We hence identify a synapse-related scaffold protein with pleiotropic functions, influencing the integrity of the developing cerebral cortex.
Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Proteínas Asociadas a SAP90-PSD95/metabolismo , Animales , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Humanos , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/fisiologíaRESUMEN
The serotonin 2B (5-HT2B) receptor coupled to Gq-protein contributes to the control of neuronal excitability and is implicated in various psychiatric disorders. The mechanisms underlying its brain function are not fully described. Using peptide affinity chromatography combined with mass spectrometry, we found that the PDZ binding motif of the 5-HT2B receptor located at its C-terminal end interacts with the scaffolding protein channel interacting PDZ protein (CIPP). We then showed, in COS-7 cells, that the association of the 5-HT2B receptor to CIPP enhanced receptor-operated inositol phosphate (IP) production without affecting its cell surface and intracellular levels. Co-immunoprecipitation experiments revealed that CIPP, the 5-HT2B receptor, and the NR1 subunit of the NMDA receptor form a macromolecular complex. CIPP increased 5-HT2B receptor clustering at the surface of primary cultured hippocampal neurons and prevented receptor dispersion following agonist stimulation, thus potentiating IP production and intracellular calcium mobilization in dendrites. CIPP or 5-HT2B receptor stimulation in turn dispersed NR1 clusters colocalized with 5-HT2B receptors and increased the density and maturation of dendritic spines. Collectively, our results suggest that the 5-HT2B receptor, the NMDA receptor, and CIPP may form a signaling platform by which serotonin can influence structural plasticity of excitatory glutamatergic synapses.
Asunto(s)
Receptor de Serotonina 5-HT2B , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismoRESUMEN
Altered development of prefrontal cortex (PFC) circuits can have long-term consequences on adult emotional behavior. Changes in serotonin homeostasis during critical periods produced by genetic or pharmacological inactivation of the serotonin transporter (SERT, or Slc6a4), have been involved in such developmental effects. In mice, selective serotonin reuptake inhibitors (SSRIs), administered during postnatal development cause exuberant synaptic connectivity of the PFC to brainstem dorsal raphe nucleus (DRN) circuits, and increase adult risk for developing anxiety and depressive symptoms. SERT is transiently expressed in the glutamate neurons of the mouse PFC, that project to the DRN. Here, we find that 5-HTR7 is transiently co-expressed with SERT by PFC neurons, and it plays a key role in the maturation of PFC-to-DRN synaptic circuits during early postnatal life. 5-HTR7-KO mice show reduced PFC-to-DRN synaptic density (as measured by array-tomography and VGLUT1/synapsin immunocytochemistry). Conversely, 5-HTR7 over-expression in the developing PFC increased PFC-to-DRN synaptic density. Long-term consequences on depressive-like and anxiogenic behaviors were observed in adults. 5-HTR7 over-expression in the developing PFC, results in depressive-like symptoms in adulthood. Importantly, the long-term depressive-like and anxiogenic effects of SSRIs (postnatal administration of fluoxetine from P2 to P14) were not observed in 5-HTR7-KO mice, and were prevented by co-administration of the selective inhibitor of 5-HTR7, SB269970. This study identifies a new role 5-HTR7 in the postnatal maturation of prefrontal descending circuits. Furthermore, it shows that 5-HTR7 in the PFC is crucially required for the detrimental emotional effects caused by SSRI exposure during early postnatal life.
Asunto(s)
Receptores de Serotonina , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Núcleo Dorsal del Rafe , Fluoxetina/farmacología , Ratones , Corteza Prefrontal , Receptores de Serotonina/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacologíaRESUMEN
Upon binding to insulin, the ß-subunit of insulin receptor (IR) is phosphorylated and instantly activates intracellular signaling. A defect in this process causes the development of several metabolic disorders including non-insulin-dependent diabetes, such as type 2 and gestational diabetes mellitus (GDM). Under diabetic conditions the phosphorylation of IR in placenta, but not in platelets, is impaired. Interestingly the cellular distribution of the serotonin transporter (SERT), which utilizes the insulin signaling for posttranslational modification, shows tissue-type-dependent variation: SERT function is impaired in GDM-associated placenta, but not in platelets. In order to understand the correlation between IR, SERT and their tissue-type-dependent features, we tested an association between SERT and IR and whether this association affects the phosphorylation of IR. Using various approaches, we demonstrated a physical association between the Carboxyl terminal of SERT and the ß-subunit of IR. This association was found on the plasma membrane of the placenta and the platelets. Next, the contribution of the SERT-IR association to the phosphorylation of IR was analyzed in heterologous and endogenous expression systems following insulin-treatment. The in vivo impact of SERT-IR association on the phosphorylation of IR was explored in placenta and platelets of SERT gene knockout (KO) mice. The IR phosphorylation was significantly downregulated only in the placenta, but not in platelets of SERT-KO mice. These findings are supported by time course experiments, which demonstrate that the phosphorylation of IR occurs vis-a-vis IR-SERT association, and at least one of the IR binding domains is identified as the carboxyl-terminus of SERT. These findings suggest an important role for IR-SERT association in maintaining the phosphorylation of IR and regulating the insulin signaling in placenta.
RESUMEN
The lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits. Morphine withdrawal-driven synaptic plasticity and reduced sociability require tumor necrosis factor-α (TNF-α) release and neuronal TNF receptor 1 activation. Hence, habenular cytokines control synaptic and behavioral adaptations during drug withdrawal.