Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
New Phytol ; 242(2): 479-492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418430

RESUMEN

Biophysicochemical rhizosheath properties play a vital role in plant drought adaptation. However, their integration into the framework of plant drought response is hampered by incomplete mechanistic understanding of their drought responsiveness and unknown linkage to intraspecific plant-soil drought reactions. Thirty-eight Zea mays varieties were grown under well-watered and drought conditions to assess the drought responsiveness of rhizosheath properties, such as soil aggregation, rhizosheath mass, net-rhizodeposition, and soil organic carbon distribution. Additionally, explanatory traits, including functional plant trait adaptations and changes in soil enzyme activities, were measured. Drought restricted soil structure formation in the rhizosheath and shifted plant-carbon from litter-derived organic matter in macroaggregates to microbially processed compounds in microaggregates. Variety-specific functional trait modifications determined variations in rhizosheath drought responsiveness. Drought responses of the plant-soil system ranged among varieties from maintaining plant-microbial interactions in the rhizosheath through accumulation of rhizodeposits, to preserving rhizosheath soil structure while increasing soil exploration through enhanced root elongation. Drought-induced alterations at the root-soil interface may hold crucial implications for ecosystem resilience in a changing climate. Our findings highlight that rhizosheath soil properties are an intrinsic component of plant drought response, emphasizing the need for a holistic concept of plant-soil systems in future research on plant drought adaptation.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Sequías , Carbono/análisis , Plantas , Raíces de Plantas/fisiología
2.
Plant Cell Environ ; 47(7): 2526-2541, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515431

RESUMEN

A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.


Asunto(s)
Adaptación Fisiológica , Sequías , Micorrizas , Raíces de Plantas , Rizosfera , Suelo , Zea mays , Zea mays/fisiología , Zea mays/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Suelo/química , Micorrizas/fisiología , Fenotipo , Nitrógeno/metabolismo
3.
Glob Chang Biol ; 30(3): e17247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491798

RESUMEN

Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0-30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30-100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long-term continuous N deposition. Finally, the lack of depth-dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Nitrógeno/análisis , Bosques , Secuestro de Carbono , China
4.
Ann Bot ; 131(2): 373-386, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479887

RESUMEN

BACKGROUND AND AIMS: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that the stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. METHODS: We investigate the response of 48 contrasting maize (Zea mays) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. KEY RESULTS: Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. CONCLUSIONS: Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.


Asunto(s)
Desecación , Zea mays , Zea mays/genética , Genotipo , Fenotipo , Hojas de la Planta/genética , Transpiración de Plantas , Suelo , Estomas de Plantas , Raíces de Plantas/genética
5.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626664

RESUMEN

Examining in situ processes in the soil rhizosphere requires spatial information on physical and chemical properties under undisturbed conditions. We developed a correlative imaging workflow for targeted sampling of roots in their three-dimensional (3D) context and assessed the imprint of roots on chemical properties of the root-soil contact zone at micrometer to millimeter scale. Maize (Zea mays) was grown in 15N-labeled soil columns and pulse-labeled with 13CO2 to visualize the spatial distribution of carbon inputs and nitrogen uptake together with the redistribution of other elements. Soil columns were scanned by X-ray computed tomography (X-ray CT) at low resolution (45 µm) to enable image-guided subsampling of specific root segments. Resin-embedded subsamples were then analyzed by X-ray CT at high resolution (10 µm) for their 3D structure and chemical gradients around roots using micro-X-ray fluorescence spectroscopy (µXRF), nanoscale secondary ion mass spectrometry (NanoSIMS), and laser-ablation isotope ratio mass spectrometry (LA-IRMS). Concentration gradients, particularly of calcium and sulfur, with different spatial extents could be identified by µXRF. NanoSIMS and LA-IRMS detected the release of 13C into soil up to a distance of 100 µm from the root surface, whereas 15N accumulated preferentially in the root cells. We conclude that combining targeted sampling of the soil-root system and correlative microscopy opens new avenues for unraveling rhizosphere processes in situ.

6.
Environ Sci Technol ; 55(13): 9384-9393, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165287

RESUMEN

The development of high-resolution microscopy and spectroscopy techniques has allowed the analysis of microscopic 3D objects in fields like nanotechnology and life and soil sciences. Soils have the ability to incorporate and store large amounts of organic carbon. To study this organic matter (OM) sequestration, it is essential to analyze its association with soil minerals at the relevant microaggregate scale. This has been previously studied in 2D. However, 3D surface representations would allow a variable angle and magnification analysis, providing detailed insight on their architecture. Here we illustrate a 4D surface reconstruction workflow able to locate preferential sites for OM deposition with respect to microaggregate topography. We used Helium Ion Microscopy to acquire overlapping Secondary Electron (SE) images to reconstruct the soil topography in 3D. Then we used nanoscale Secondary Ion Mass Spectrometry imaging to chemically differentiate between the OM and mineral constituents forming the microaggregates. This image was projected onto the 3D SE model to create a 4D surface reconstruction. Our results show that organo-mineral associations mainly form at medium curvatures while flat and highly curved surfaces are avoided. This method presents an important step forward to survey the 3D physical structure and chemical composition of microscale biogeochemical systems correlatively.


Asunto(s)
Minerales , Suelo , Carbono , Análisis Espectral
7.
Environ Sci Technol ; 55(14): 9876-9884, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34247483

RESUMEN

Neutrophilic microbial pyrite (FeS2) oxidation coupled to denitrification is thought to be an important natural nitrate attenuation pathway in nitrate-contaminated aquifers. However, the poor solubility of pyrite raises questions about its bioavailability and the mechanisms underlying its oxidation. Here, we investigated direct microbial pyrite oxidation by a neutrophilic chemolithoautotrophic nitrate-reducing Fe(II)-oxidizing culture enriched from a pyrite-rich aquifer. We used pyrite with natural abundance (NA) of Fe isotopes (NAFe-pyrite) and 57Fe-labeled siderite to evaluate whether the oxidation of the more soluble Fe(II)-carbonate (FeCO3) can indirectly drive abiotic pyrite oxidation. Our results showed that in setups where only pyrite was incubated with bacteria, direct microbial pyrite oxidation contributed ca. 26% to overall nitrate reduction. The rest was attributed to the oxidation of elemental sulfur (S0), present as a residue from pyrite synthesis. Pyrite oxidation was evidenced in the NAFe-pyrite/57Fe-siderite setups by maps of 56FeO and 32S obtained using a combination of SEM with nanoscale secondary ion MS (NanoSIMS), which showed the presence of 56Fe(III) (oxyhydr)oxides that could solely originate from 56FeS2. Based on the fit of a reaction model to the geochemical data and the Fe-isotope distributions from NanoSIMS, we conclude that anaerobic oxidation of pyrite by our neutrophilic enrichment culture was mainly driven by direct enzymatic activity of the cells. The contribution of abiotic pyrite oxidation by Fe3+ appeared to be negligible in our experimental setup.


Asunto(s)
Agua Subterránea , Nitratos , Anaerobiosis , Compuestos Férricos , Compuestos Ferrosos , Hierro , Oxidación-Reducción , Sulfuros
8.
Glob Chang Biol ; 26(3): 1926-1935, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31774225

RESUMEN

Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13 C-CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg-1  soil day-1 in the Ah horizon. The fixation rates were 2.8-8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%-3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram-positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram-positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.


Asunto(s)
Dióxido de Carbono , Suelo , Carbono , Bosques , Hongos , Microbiología del Suelo
9.
Glob Chang Biol ; 25(4): 1529-1546, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30554462

RESUMEN

Rising atmospheric CO2 concentrations have increased interest in the potential for forest ecosystems and soils to act as carbon (C) sinks. While soil organic C contents often vary with tree species identity, little is known about if, and how, tree species influence the stability of C in soil. Using a 40 year old common garden experiment with replicated plots of eleven temperate tree species, we investigated relationships between soil organic matter (SOM) stability in mineral soils and 17 ecological factors (including tree tissue chemistry, magnitude of organic matter inputs to the soil and their turnover, microbial community descriptors, and soil physicochemical properties). We measured five SOM stability indices, including heterotrophic respiration, C in aggregate occluded particulate organic matter (POM) and mineral associated SOM, and bulk SOM δ15 N and ∆14 C. The stability of SOM varied substantially among tree species, and this variability was independent of the amount of organic C in soils. Thus, when considering forest soils as C sinks, the stability of C stocks must be considered in addition to their size. Further, our results suggest tree species regulate soil C stability via the composition of their tissues, especially roots. Stability of SOM appeared to be greater (as indicated by higher δ15 N and reduced respiration) beneath species with higher concentrations of nitrogen and lower amounts of acid insoluble compounds in their roots, while SOM stability appeared to be lower (as indicated by higher respiration and lower proportions of C in aggregate occluded POM) beneath species with higher tissue calcium contents. The proportion of C in mineral associated SOM and bulk soil ∆14 C, though, were negligibly dependent on tree species traits, likely reflecting an insensitivity of some SOM pools to decadal scale shifts in ecological factors. Strategies aiming to increase soil C stocks may thus focus on particulate C pools, which can more easily be manipulated and are most sensitive to climate change.

10.
Environ Sci Technol ; 53(2): 829-837, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30525511

RESUMEN

The microenvironmental conditions in soil exert a major control on many ecosystem functions of soil. Their investigation in intact soil samples is impaired by methodological challenges in the joint investigation of structural heterogeneity that defines pathways for matter fluxes and biogeochemical heterogeneity that governs reaction patterns and microhabitats. Here we demonstrate how these challenges can be overcome with a novel protocol for correlative imaging based on image registration to combine three-dimensional microstructure analysis of X-ray tomography data with biogeochemical microscopic data of various modalities and scales (light microscopy, fluorescence microscopy, electron microscopy, secondary ion mass spectrometry). Correlative imaging of a microcosm study shows that the majority (75%) of bacteria are located in mesopores (<10 µm). Furthermore, they have a preference to forage near macropore surfaces and near fresh particulate organic matter. Ignoring the structural complexity coming from the third dimension is justified for metrics based on size and distances but leads to a substantial bias for metrics based on continuity. This versatile combination of imaging modalities with freely available software and protocols may open up completely new avenues for the investigation of many important biogeochemical and physical processes in structured soils.


Asunto(s)
Ecosistema , Suelo , Microscopía Electrónica , Microscopía Fluorescente , Espectrometría de Masa de Ion Secundario
11.
Environ Sci Technol ; 53(22): 13081-13087, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31658416

RESUMEN

Iron (Fe) oxides in soils are strong sorbents for environmentally important compounds like soil organic matter (SOM) or phosphate, while sorption under field conditions is still poorly understood. We installed polyvinyl chloride plastic bars which have been coated either with synthetic Fe or manganese (Mn) oxides for 30 days in a redoximorphic soil. A previous study revealed the formation of newly formed ("natural") Fe oxides along the Mn oxide coatings. This enables us to differentiate between sorption occurring onto the surfaces of synthetic versus natural Fe oxides. After removal of the bars, they were analyzed by nanoscale secondary ion mass spectrometry (NanoSIMS) to study the distribution of Fe (56Fe16O-), SOM (12C14N-), and phosphorus (31P16O2-) at the microscale. Image analysis of individual Fe oxide particles revealed a close association of Fe, SOM, and P resulting in coverage values up to 71%. Furthermore, ion ratios between sorbent (56Fe16O-) and sorbate (12C14N- and 31P16O2-) were smaller along the natural oxides when compared with those for synthetic Fe oxides. We conclude that both natural and synthetic Fe oxides rapidly sequester SOM and P (i.e., within 30 days) but that newly, natural formed Fe oxides sorbe more SOM and P than synthetic Fe oxides.


Asunto(s)
Fosfatos , Suelo , Adsorción , Hierro , Óxidos
12.
An Acad Bras Cienc ; 91(suppl 2): e20191300, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800676

RESUMEN

Fossil vertebrates from Antarctica are considerably rare, hampering our understanding of the evolutionary history of the biota from that continent. For several austral summers, the PALEOANTAR project has been carrying out fieldwork in the Antarctic Peninsula in search for fossils, particularly Cretaceous vertebrates. Among the specimens recovered so far are two bones referable to Pterosauria, more specifically to the Pterodacyloidea, the first volant reptiles from Antarctica to be fully described. MN 7800-V (part and counterpart) was recovered from a moraine at the Abernathy Flats (Santa Marta Formation, Lachman Crags Member, Santonian-Campanian) on James Ross Island. It is interpreted as the distal articulation of a first phalanx of the wing finger, representing an animal with an estimated wingspan between 3 and 4 m. The second specimen (MN 7801-V) comes from Vega Island (Snow Hill Island Formation, Maastrichtian) and is identified as a wing metacarpal IV of an animal with an estimated wingspan from 4 to 5 m. These occurrences show that pterodactyloids inhabited the Antarctic Peninsula at least during the Upper Cretaceous and demonstrate that large pterosaurs were widespread through all parts of the planet during that period.


Asunto(s)
Dinosaurios/anatomía & histología , Fósiles , Alas de Animales/anatomía & histología , Animales , Regiones Antárticas , Dinosaurios/clasificación , Vuelo Animal
13.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29500258

RESUMEN

The enrichment culture KS is one of the few existing autotrophic, nitrate-reducing, Fe(II)-oxidizing cultures that can be continuously transferred without an organic carbon source. We used a combination of catalyzed amplification reporter deposition fluorescence in situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (NanoSIMS) to analyze community dynamics, single-cell activities, and interactions among the two most abundant microbial community members (i.e., Gallionellaceae sp. and Bradyrhizobium spp.) under autotrophic and heterotrophic growth conditions. CARD-FISH cell counts showed the dominance of the Fe(II) oxidizer Gallionellaceae sp. under autotrophic conditions as well as of Bradyrhizobium spp. under heterotrophic conditions. We used NanoSIMS to monitor the fate of 13C-labeled bicarbonate and acetate as well as 15N-labeled ammonium at the single-cell level for both taxa. Under autotrophic conditions, only the Gallionellaceae sp. was actively incorporating 13C-labeled bicarbonate and 15N-labeled ammonium. Interestingly, both Bradyrhizobium spp. and Gallionellaceae sp. became enriched in [13C]acetate and [15N]ammonium under heterotrophic conditions. Our experiments demonstrated that Gallionellaceae sp. was capable of assimilating [13C]acetate while Bradyrhizobium spp. were not able to fix CO2, although a metagenomics survey of culture KS recently revealed that Gallionellaceae sp. lacks genes for acetate uptake and that the Bradyrhizobium sp. carries the genetic potential to fix CO2 The study furthermore extends our understanding of the microbial reactions that interlink the nitrogen and Fe cycles in the environment.IMPORTANCE Microbial mechanisms by which Fe(II) is oxidized with nitrate as the terminal electron acceptor are generally referred to as "nitrate-dependent Fe(II) oxidation" (NDFO). NDFO has been demonstrated in laboratory cultures (such as the one studied in this work) and in a variety of marine and freshwater sediments. Recently, the importance of NDFO for the transport of sediment-derived Fe in aquatic ecosystems has been emphasized in a series of studies discussing the impact of NDFO for sedimentary nutrient cycling and redox dynamics in marine and freshwater environments. In this article, we report results from an isotope labeling study performed with the autotrophic, nitrate-reducing, Fe(II)-oxidizing enrichment culture KS, which was first described by Straub et al. (1) about 20 years ago. Our current study builds on the recently published metagenome of culture KS (2).


Asunto(s)
Bradyrhizobium/metabolismo , Carbono/metabolismo , Compuestos Ferrosos/metabolismo , Gallionellaceae/metabolismo , Nitratos/metabolismo , Procesos Autotróficos , Hibridación Fluorescente in Situ , Oxidación-Reducción , Espectrometría de Masa de Ion Secundario
14.
Glob Chang Biol ; 24(4): 1637-1650, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29223134

RESUMEN

Global change contributes to the retreat of glaciers at unprecedented rates. The deglaciation facilitates biogeochemical processes on glacial deposits with initiating soil formation as an important driver of evolving ecosystems. The underlying mechanisms of soil formation and the association of soil organic matter (SOM) with mineral particles remain unclear, although further insights are critical to understand carbon sequestration in soils. We investigated the microspatial arrangement of SOM coatings at intact soil microaggregate structures during various stages of ecosystem development from 15 to >700 years after deglaciation in the proglacial environment of the Damma glacier (Switzerland). The functionally important clay-sized fraction (<2 µm) was separated into two density fractions with different amounts of organo-mineral associations: light (1.6-2.2 g/cm3 ) and heavy (>2.2 g/cm3 ). To quantify how SOM extends across the surface of mineral particles (coverage) and whether SOM coatings are distributed in fragmented or connected patterns (connectivity), we developed an image analysis protocol based on nanoscale secondary ion mass spectrometry (NanoSIMS). We classified SOM and mineral areas depending on the 16 O- , 12 C- , and 12 C14 N- distributions. With increasing time after glacial retreat, the microspatial coverage and connectivity of SOM increased rapidly. The rapid soil formation led to a succession of patchy distributed to more connected SOM coatings on soil microaggregates. The maximum coverage of 55% at >700 years suggests direct evidence for SOM sequestration being decoupled from the mineral surface, as it was not completely masked by SOM and retained its functionality as an ion exchange site. The chemical composition of SOM coatings showed a rapid change toward a higher CN:C ratio already at 75 years after glacial retreat, which was associated with microbial succession patterns reflecting high N assimilation. Our results demonstrate that rapid SOM sequestration drives the microspatial succession of SOM coatings in soils, a process that can stabilize SOM for the long term.


Asunto(s)
Carbono/química , Cubierta de Hielo , Suelo/química , Ecosistema , Minerales/química , Suiza , Factores de Tiempo
15.
Glob Chang Biol ; 24(4): 1762-1770, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29211318

RESUMEN

Understanding the cycling of C and N in soils is important for maintaining soil fertility while also decreasing greenhouse gas emissions, but much remains unknown about how organic matter (OM) is stabilized in soils. We used nano-scale secondary ion mass spectrometry (NanoSIMS) to investigate the changes in C and N in a Vertisol and an Alfisol incubated for 365 days with 13 C and 15 N pulse labeled lucerne (Medicago sativa L.) to discriminate new inputs of OM from the existing soil OM. We found that almost all OM within the free stable microaggregates of the soil was associated with mineral particles, emphasizing the importance of organo-mineral interactions for the stabilization of C. Of particular importance, it was also found that 15 N-rich microbial products originating from decomposition often sorbed directly to mineral surfaces not previously associated with OM. Thus, we have shown that N-rich microbial products preferentially attach to distinct areas of mineral surfaces compared to C-dominated moieties, demonstrating the ability of soils to store additional OM in newly formed organo-mineral associations on previously OM-free mineral surfaces. Furthermore, differences in 15 N enrichment were observed between the Vertisol and Alfisol presumably due to differences in mineralogy (smectite-dominated compared to kaolinite-dominated), demonstrating the importance of mineralogy in regulating the sorption of microbial products. Overall, our findings have important implications for the fundamental understanding of OM cycling in soils, including the immobilization and storage of N-rich compounds derived from microbial decomposition and subsequent N mineralization to sustain plant growth.


Asunto(s)
Medicago sativa/metabolismo , Nitrógeno/química , Suelo/química , Ciclo del Carbono , Isótopos de Carbono , Espectrometría de Masas/métodos , Medicago sativa/química , Minerales/química , Ciclo del Nitrógeno , Isótopos de Nitrógeno
16.
Rapid Commun Mass Spectrom ; 32(8): 619-628, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29465799

RESUMEN

RATIONALE: Aluminium (Al)-substituted goethite is ubiquitous in soils and sediments. The extent of Al-substitution affects the physicochemical properties of the mineral and influences its macroscale properties. Bulk analysis only provides total Al/Fe ratios without providing information with respect to the Al-substitution of single minerals. Here, we demonstrate that nanoscale secondary ion mass spectrometry (NanoSIMS) enables the precise determination of Al-content in single minerals, while simultaneously visualising the variation of the Al/Fe ratio. METHODS: Al-substituted goethite samples were synthesized with increasing Al concentrations of 0.1, 3, and 7 % and analysed by NanoSIMS in combination with established bulk spectroscopic methods (XRD, FTIR, Mössbauer spectroscopy). The high spatial resolution (50-150 nm) of NanoSIMS is accompanied by a high number of single-point measurements. We statistically evaluated the Al/Fe ratios derived from NanoSIMS, while maintaining the spatial information and reassigning it to its original localization. RESULTS: XRD analyses confirmed increasing concentration of incorporated Al within the goethite structure. Mössbauer spectroscopy revealed 11 % of the goethite samples generated at high Al concentrations consisted of hematite. The NanoSIMS data show that the Al/Fe ratios are in agreement with bulk data derived from total digestion and demonstrated small spatial variability between single-point measurements. More advantageously, statistical analysis and reassignment of single-point measurements allowed us to identify distinct spots with significantly higher or lower Al/Fe ratios. CONCLUSIONS: NanoSIMS measurements confirmed the capacity to produce images, which indicated the uniform increase in Al-concentrations in goethite. Using a combination of statistical analysis with information from complementary spectroscopic techniques (XRD, FTIR and Mössbauer spectroscopy) we were further able to reveal spots with lower Al/Fe ratios as hematite.

18.
Anal Bioanal Chem ; 410(3): 923-931, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28808741

RESUMEN

We examined the potential of stable-isotope Raman microspectroscopy (SIRM) for the evaluation of differently enriched 13C-labeled humic acids as model substances for soil organic matter (SOM). The SOM itself can be linked to the soil water holding capacity. Therefore, artificial humic acids (HA) with known isotopic compositions were synthesized and analyzed by means of SIRM. By performing a pregraphitization, a suitable analysis method was developed to cope with the high fluorescence background. Results were verified against isotope ratio mass spectrometry (IRMS). The limit of quantification was 2.1 × 10-1 13C/C tot for the total region and 3.2 × 10-2 13C/C tot for a linear correlation up to 0.25 13C/C tot. Complementary nanoscale secondary ion mass spectrometry (NanoSIMS) analysis indicated small-scale heterogeneity within the dry sample material, even though-owing to sample topography and occurring matrix effects-obtained values deviated in magnitude from those of IRMS and SIRM. Our study shows that SIRM is well-suited for the analysis of stable isotope-labeled HA. This method requires no specific sample preparation and can provide information with a spatial resolution in the micrometer range. Graphical abstract Analysis of the isotopic composition of humic acids by Raman microspectroscopy in combination with isotope ratio mass spectrometry and nanoscale secondary ion mass spectrometry.

19.
J Environ Manage ; 209: 216-226, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29294447

RESUMEN

Reclamation of post-mining sites commonly results in rapid accrual of carbon (C) and nitrogen (N) contents due to increasing plant inputs over time. However, little information is available on the distribution of C and N contents with respect to differently stabilized soil organic matter (SOM) fractions during succession or as a result of different reclamation practice. Hence, it remains widely unknown how stable or labile these newly formed C and N pools are. Gaining a deeper understanding of the state of these pools may provide important implications for reclamation practices with respect to C sequestration. We thus investigated C, N, and plant-derived compounds in bulk soil and SOM fractions during succession in post-mining chronosequences (reclaimed with overburden or salvaged topsoil) located along a northwest to southeast transect across the USA. Our results indicate that current reclamation practices perform well with respect to rapid recovery of soil aggregates and the partitioning of C and N to different SOM fractions, these measures being similar to those of natural climax vegetation sites already 2-5 years after reclamation. A general applicability of our results to other post-mining sites with similar reclamation practices may be inferred from the fact that the observed patterns were consistent along the investigated transect, covering different climates and vegetation across the USA. However, regarding SOM stability, the use of salvaged topsoil may be beneficial as compared to that of overburden material because C and N in the fraction regarded as most stable was by 26 and 35% lower at sites restored with overburden as compared to those restored with salvaged topsoil. Plant-derived compounds appeared to be mainly related to bio-available particulate organic matter and particulate organic matter partly stabilized within aggregates, challenging the long-term persistence of plant input C in post-mining soils.


Asunto(s)
Carbono/análisis , Nitrógeno/análisis , Minería , Material Particulado , Suelo/química
20.
Environ Sci Technol ; 51(21): 12182-12189, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28954517

RESUMEN

The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 µm × 30 µm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.


Asunto(s)
Secuestro de Carbono , Suelo , Minerales , Espectrometría de Masa de Ion Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA