RESUMEN
Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.
Asunto(s)
Codón , Virus de la Parainfluenza 3 Humana , Vacunas Atenuadas , Replicación Viral , Animales , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/genética , Humanos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Codón/genética , Cricetinae , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/prevención & control , Infecciones por Respirovirus/virología , Chlorocebus aethiops , Células Vero , Sistemas de Lectura Abierta/genética , Mesocricetus , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/genética , Vacunas contra la Parainfluenza/inmunología , Vacunas contra la Parainfluenza/genéticaRESUMEN
Successfully combating the COVID-19 pandemic depends on mass vaccination with suitable vaccines to achieve herd immunity. Here, we describe COVI-VAC, the only live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine currently in clinical development. COVI-VAC was developed by recoding a segment of the viral spike protein with synonymous suboptimal codon pairs (codon-pair deoptimization), thereby introducing 283 silent (point) mutations. In addition, the furin cleavage site within the spike protein was deleted from the viral genome for added safety of the vaccine strain. Except for the furin cleavage site deletion, the COVI-VAC and parental SARS-CoV-2 amino acid sequences are identical, ensuring that all viral proteins can engage with the host immune system of vaccine recipients. COVI-VAC was temperature sensitive in vitro yet grew robustly (>107 plaque forming units/mL) at the permissive temperature. Tissue viral loads were consistently lower, lung pathology milder, and weight loss reduced in Syrian golden hamsters (Mesocricetus auratus) vaccinated intranasally with COVI-VAC compared to those inoculated with wild-type (WT) virus. COVI-VAC inoculation generated spike IgG antibody levels and plaque reduction neutralization titers similar to those in hamsters inoculated with WT virus. Upon challenge with WT virus, COVI-VAC vaccination reduced lung challenge viral titers, resulted in undetectable virus in the brain, and protected hamsters from almost all SARS-CoV-2-associated weight loss. Highly attenuated COVI-VAC is protective at a single intranasal dose in a relevant in vivo model. This, coupled with its large-scale manufacturing potential, supports its potential use in mass vaccination programs.
Asunto(s)
Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Chlorocebus aethiops , Femenino , Humanos , Masculino , Mesocricetus , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas Atenuadas/inmunología , Células VeroRESUMEN
BACKGROUND: Although numerous effective exercise interventions can treat upper limb motor impairments after stroke, it remains unknown as to which are the most effective. The objective of the present study was to investigate the comparative effectiveness of various exercise interventions of the upper limb for individuals with an acute or subacute stroke. METHODS: For this systematic review with network meta-analysis, we searched PubMed/MEDLINE, Cochrane Library CENTRAL and Web of Science from database inception to September 2021 for randomized controlled trials examining individuals within 6 months of stroke onset, active upper limb exercise interventions, and any kind of control intervention. The primary outcome was upper limb motor function, secondary outcomes were activities of daily living and social participation, both assessed at post-intervention and follow-up. Nonspecific/multimodal active upper limb therapy was the standard comparator. Standardized mean differences, that is, Hedge's g, were the effect size estimators. We calculated Frequentist-based network meta-analysis for the comparative effectiveness calculations using the R package netmeta. Main analyses were network plotting to display the geometry of the network and P-scores to summarize the intervention hierarchy. Results were derived from direct within-study and indirect between-study evidence comparisons. The Cochrane risk-of-bias tool II assessed all risk of bias domains. RESULTS: This review involved 145 randomized controlled trial on 6432 participants and 45 different treatment categories. The network meta-analysis analyzed 119 randomized controlled trials on 5553 participants and 41 different treatment categories. Electrical stimulation combined with task-specific training (standardized mean difference, 1.03 [95% CI, 0.51-1.55]; P<0.0001, P-score=0.11), high-volume constraint-induced movement therapy (0.86 [0.4-1.32]; P=0.0003, P-score=0.18), and strength training (0.65 [0.17-1.13]; P=0.01, P-score=0.28) were the most effective interventions (each k=107). CONCLUSIONS: Electrical stimulation combined with task-specific training (low evidence), high-volume constraint-induced movement therapy (moderate evidence), and strength training (low evidence) were the most effective interventions in improving upper limb motor function in individuals with a stroke. As the results were sensitive against a high risk of bias, likewise, these interventions should receive more attention in research and practice. Due to the heterogeneous use, electrical stimulation in combination with task-specific training should be further investigated in well-designed studies alongside other successful interventions (eg, constraint-induced movement therapy). REGISTRATION: URL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42021284064.
Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Actividades Cotidianas , Rehabilitación de Accidente Cerebrovascular/métodos , Metaanálisis en Red , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Terapia por Ejercicio/métodos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
PURPOSE: Wrong-site surgeries are rare but potentially serious clinical errors. Marking the surgical site is crucial to preventing errors, but is hindered in the ENT field by the presence of many internal organs. In addition, there is no standardized marking procedure. METHODS: Here, an ENT surgical-marking procedure was developed and introduced at a clinic. The procedure was evaluated through anonymized questionnaires. This study was conducted over a 6-month period by interviewing patients and, at the beginning and end of this period, doctors and other surgical staff. RESULTS: The internal organ-marking problem was solved by applying a fixed abbreviation for each procedure onto the shoulder in addition to marking the skin surface as close to the organ as possible. The procedure was described as practicable by 100% of the interviewees; 75% of the ENT physicians and 96.3% of the other surgical staff considered the procedure highly important for preventing site confusion, and 75% of the physicians had a consequently greater feeling of safety. Of the 248 patients surveyed, 96.0% considered the marking procedure useful, and 75.8% had a consequently greater feeling of safety. For 52.0%, the marking reduced their fear of the operation. CONCLUSIONS: For the first time, a standardized procedure was developed to mark the site of ENT surgery directly, uniformly and safely on patients. The procedure was judged to be useful and practicable and was also deemed crucial for preventing site confusion. Patients felt safer and less fearful of the operation due to the marking.
Asunto(s)
Errores Médicos , Procedimientos Ortopédicos , Personal de Salud , Humanos , Errores Médicos/prevención & control , Procedimientos Ortopédicos/métodosRESUMEN
We subjected various open reading frames (ORFs) in the genome of respiratory syncytial virus (RSV) to codon pair optimization (CPO) by increasing the content of codon pairs that are overrepresented in the human genome without changing overall codon usage and amino acid sequences. CPO has the potential to increase the expression of the encoded protein(s). Four viruses were made: Max A (with CPO of NS1, NS2, N, P, M, and SH ORFs), Max B (with CPO of G and F), Max L (with CPO of L), and Max FLC (with CPO of all ORFs except M2-1 and M2-2). Because of the possibility of increased viral replication, each CPO virus was attenuated by the inclusion of a codon deletion mutation (Δ1313) and a missense mutation (I1314L) in the L polymerase. CPO had no effect on multicycle virus replication in vitro, temperature sensitivity, or specific infectivity. Max A and L, which in common had CPO of one or more ORFs of proteins of the polymerase complex, exhibited global increases in viral protein synthesis. Max B alone exhibited decreased protein synthesis, and it alone had reduced single-cycle virus replication in vitro All CPO RSVs exhibited marginal reductions in replication in mice and hamsters. Surprisingly, the CPO RSVs induced lower levels of serum RSV-neutralizing antibodies in hamsters. This reduced immunogenicity might reflect reduced viral replication and possibly also the decrease in CpG and UpA dinucleotides as immune stimulators. Overall, our study describes paradoxical effects of CPO of an RNA virus on viral replication and the adaptive humoral immune response.IMPORTANCE Using computer algorithms and large-scale DNA synthesis, one or more ORFs of a microbial pathogen can be recoded by different strategies that involve the introduction of up to thousands of nucleotide changes without affecting amino acid coding. This approach has been used mostly to generate deoptimized viruses used as vaccine candidates. However, the effects of the converse approach of generating optimized viruses are still largely unknown. Here, various ORFs in the genome of respiratory syncytial virus (RSV) were codon pair optimized (CPO) by increasing the content of codon pairs that are overrepresented in the human genome. CPO did not affect RSV replication in multicycle replication experiments in vitro. However, replication was marginally reduced in two rodents models. In hamsters, CPO RSVs induced lower levels of serum RSV-neutralizing antibodies. Thus, CPO of an RNA virus for a mammalian host has paradoxical effects on virus replication and the adaptive humoral immune response.
Asunto(s)
Uso de Codones , Genoma Viral/inmunología , Sistemas de Lectura Abierta/inmunología , Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios/fisiología , Replicación Viral , Células A549 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Cricetinae , Humanos , Mesocricetus , Ratones , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/patología , Células Vero , Replicación Viral/genética , Replicación Viral/inmunologíaRESUMEN
Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.
Asunto(s)
Genoma Viral , Poliomielitis/virología , Poliovirus/genética , Poliovirus/patogenicidad , Virión/genética , Ensamble de Virus , Replicación Viral , Células A549 , Células HeLa , Humanos , Fenotipo , Poliomielitis/genética , ARN ViralRESUMEN
Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates.
Asunto(s)
Genoma Viral/genética , Virus ARN/genética , Vacunas Virales/genética , Animales , Línea Celular , Chlorocebus aethiops/genética , Codón/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación/genética , Sistemas de Lectura Abierta/genética , Virus Sincitial Respiratorio Humano , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética , Células Vero , Proteínas Virales/genética , Replicación Viral/genéticaRESUMEN
PURPOSE: It is not easy to assess how severe and annoying a patient's snoring is. Solid parameters are lacking; snorers cannot deliver a reliable self-assessment and it is uncertain whether bed partners' statements can be relied upon. The purpose of the present study was therefore to investigate whether and how well snoring assessment based on acoustic parameters and bed partners' reporting agree. METHODS: In a double-blind, placebo-controlled study on snoring treatment, several acoustic parameters [snoring index (SI), percentage snoring time (ST), sound pressure level, sound energy, loudness, psychoacoustic annoyance and psychoacoustic snore score (PSS)] were measured in 18 subjects during 24 polysomnographies. Bed partners also assessed snoring annoyance and loudness as well as treatment outcome. RESULTS: No correlation was found between the subjective annoyance caused by snoring and the acoustic parameters. Regarding perceived loudness, there was a moderate, significant correlation with loudness (N5) and PSS over the hour with the highest SI. SI, ST, LAeq and maximum sound pressure level dB(A)max showed no significant correlation. After the intervention only mean sound energy LAeq over the entire night showed a significant correlation (rs = 0.782; p = 0.022) with bed partners' assessments. However, this result was not confirmed in the second control night. CONCLUSIONS: The non-existent or only weak correlation between bed partners' ratings and objective parameters indicate that snoring severity should be evaluated with caution. Neither acoustic parameters, at least for one measurement over just one night, nor bed partners' ratings should be used as the sole basis for snoring assessment.
Asunto(s)
Acústica , Ronquido , Humanos , Polisomnografía , Psicoacústica , Ronquido/diagnóstico , Espectrografía del SonidoRESUMEN
The latest Zika virus (ZIKV) pandemic caused great international concern from explosively proliferating throughout the Americas. Currently, there is no vaccine to prevent Zika virus infection and available tests rely on antibodies or RNA. Unfortunately, antibody-based detection systems can result in false positive results and RNA-based detection systems are costly, time-consuming, and impractical for testing in remote regions. In this study, a potential point-of-care (POC) diagnostic system was developed using a chip-based potentiometric sensor to detect Zika virus using a 3D molecular imprinting technique. This chip-based potentiometric sensor system was able to detect 10-1 PFU mL-1 ZIKV in a buffered solution under 20 minutes without any sample manipulation. This sensor was tested against Dengue virus at clinical viral loads and showed no sign of cross-reactivity. When tested against human saliva samples containing clinical viral loads, this sensor was able to detect 10 PFU mL-1 ZIKV among the pool of bio-macromolecules. The high sensitivity and high selectivity demonstrated here proved that this lab-on-a-chip diagnostic has the potential to become a POC detection system for rapid and accurate screening of flaviviruses.
Asunto(s)
Técnicas Electroquímicas/métodos , Dispositivos Laboratorio en un Chip , Virus Zika/aislamiento & purificación , Adsorción , Técnicas Electroquímicas/instrumentación , Oro/química , Límite de Detección , Impresión Molecular/métodos , Pruebas en el Punto de Atención , Sensibilidad y Especificidad , Virus Zika/química , Infección por el Virus Zika/diagnósticoRESUMEN
OBJECTIVE: Recently, poliovirus receptor-related 2 (Pvrl2) emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol-responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of Pvrl2 deficiency on atherosclerosis development and transendothelial migration of leukocytes activity. APPROACH AND RESULTS: Pvrl2-deficient mice bred onto an atherosclerosis-prone background (Pvrl2-/-Ldlr-/-Apob100/100) had less atherosclerotic lesions and more stable plaques compared with littermate controls (Pvrl2+/+Ldlr-/-Apob100/100). Pvrl2-/-Ldlr-/-Apob100/100 mice also showed a 49% decrease in transendothelial migration of leukocytes activity observed using the in vivo air pouch model. In accordance, augmented arterial wall expression of Pvrl2 during atherosclerosis progression coincided with an increased gene expression of migrating leukocytes into the vessel wall. Both in human and mice, gene and protein expression of PVRL2 was predominantly observed in the vascular endothelium according to the immunohistochemical and gene expression data. In addition, the cholesterol responsiveness of PVRL2 was also observed in humans. CONCLUSIONS: PVRL2 is a plasma cholesterol-responsive gene acting at endothelial sites of vascular inflammation that could potentially be a new therapeutic target for atherosclerosis prevention through its suggested transendothelial migration of leukocytes modulating activity.
Asunto(s)
Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colesterol/sangre , Endotelio Vascular/metabolismo , Leucocitos/metabolismo , Migración Transendotelial y Transepitelial , Animales , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteína B-100 , Apolipoproteínas B/deficiencia , Apolipoproteínas B/genética , Aterosclerosis/genética , Aterosclerosis/patología , Adhesión Celular , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endotelio Vascular/patología , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas , Fenotipo , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal , Factores de Tiempo , TransfecciónRESUMEN
The protein synthesis machineries of two distinct phyla of the Animal kingdom, insects of Arthropoda and mammals of Chordata, have different preferences for how to best encode proteins. Nevertheless, arboviruses (arthropod-borne viruses) are capable of infecting both mammals and insects just like arboviruses that use insect vectors to infect plants. These organisms have evolved carefully balanced genomes that can efficiently use the translational machineries of different phyla, even if the phyla belong to different kingdoms. Using dengue virus as an example, we have undone the genome encoding balance and specifically shifted the encoding preference away from mammals. These mammalian-attenuated viruses grow to high titers in insect cells but low titers in mammalian cells, have dramatically increased LD50s in newborn mice, and induce high levels of protective antibodies. Recoded arboviruses with a bias toward phylum-specific expression could form the basis of a new generation of live attenuated vaccine candidates.
Asunto(s)
Arbovirus/fisiología , Genoma Viral , Insectos Vectores/virología , Mamíferos/virología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Arbovirus/genética , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Codón , Virus del Dengue/genética , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Insectos Vectores/citología , Insectos Vectores/genética , Mamíferos/genética , Ratones Endogámicos ICR , Datos de Secuencia Molecular , ARN Helicasas/genética , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Vacunas Atenuadas/inmunología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Virosis/inmunología , Virosis/virologíaRESUMEN
The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes.Forty-three healthy, well-trained participants were randomized into sensorimotor (SMT; n=11), resistance training (RT; n=16) and control groups (CG; n=16). Treatment groups received either sensorimotor training (SMT) or resistance training (RT) for 6 weeks, 3 times a week. At baseline and after 6 weeks of intervention, participants' maximum isokinetic strength in trunk rotation and extension was tested (concentric/eccentric 30°/s). In addition, sudden, high-intensity trunk loading was assessed for eccentric extension and rotation, with additional perturbation. Peak torque [Nm] was calculated as the outcome.Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24 Nm 95%CI±19 Nm; Rotation: +19 Nm 95%CI±13 Nm) and RT (Extension: +35 Nm 95%CI±16 Nm; Rotation: +5 Nm 95%CI±4 Nm) compared to CG (Extension: -4 Nm 95%CI±16 Nm; Rotation: -2 Nm 95%CI±4 Nm) was present (p<0.05).This study showed that isokinetic strength gains were small, but that significant improvements in high-intensity trunk loading response could be shown for both interventions. Therefore, depending on the individual's preference, therapists have two treatment options to enhance trunk function for back pain prevention.
Asunto(s)
Retroalimentación Sensorial/fisiología , Fuerza Muscular/fisiología , Entrenamiento de Fuerza/métodos , Torso/fisiología , Adulto , Femenino , Humanos , Masculino , Rotación , Soporte de PesoRESUMEN
Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.
Asunto(s)
Agricultura , Secuestro de Carbono , Carbono , Productos Agrícolas , Suelo , Estados UnidosRESUMEN
Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded by rearranging existing synonymous codons to increase the content of underrepresented codon pairs. Amino acid coding was completely unchanged. Four CPD RSV genomes were designed in which the indicated ORFs were recoded: Min A (NS1, NS2, N, P, M, and SH), Min B (G and F), Min L (L), and Min FLC (all ORFs except M2-1 and M2-2). Surprisingly, the recombinant CPD viruses were temperature-sensitive for replication in vitro (level of sensitivity: Min FLC > Min L > Min B > Min A). All of the CPD mutants grew less efficiently in vitro than recombinant wild-type (WT) RSV, even at the typically permissive temperature of 32 °C (growth efficiency: WT > Min L > Min A > Min FLC > Min B). CPD of the ORFs for the G and F surface glycoproteins provided the greatest restrictive effect. The CPD viruses exhibited a range of restriction in mice and African green monkeys comparable with that of two attenuated RSV strains presently in clinical trials. This study provided a new type of attenuated RSV and showed that CPD can rapidly generate vaccine candidates against nonsegmented negative-strand RNA viruses, a large and expanding group that includes numerous pathogens of humans and animals.
Asunto(s)
Codón/genética , Genoma Viral/genética , Virus Sincitial Respiratorio Humano/genética , Animales , Células Cultivadas , Chlorocebus aethiops , Humanos , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Nasofaringe/virología , ARN Viral/metabolismo , Recombinación Genética/genética , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/patogenicidad , Temperatura , Células Vero , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.
Asunto(s)
Cápside/metabolismo , Enterovirus Humano C/fisiología , Infecciones por Enterovirus/metabolismo , Glutatión/metabolismo , Ensamble de Virus/fisiología , Glutatión/antagonistas & inhibidores , Células HeLa , HumanosRESUMEN
A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.
Asunto(s)
Regulación hacia Abajo/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Virales/metabolismo , Animales , Northern Blotting , Western Blotting , Protección Cruzada , Perros , Dosificación Letal Mediana , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunologíaRESUMEN
Genomes of RNA viruses contain multiple functional RNA elements required for translation or RNA replication. We use unique approaches to identify functional RNA elements in the coding sequence of poliovirus (PV), a plus strand RNA virus. The general method is to recode large segments of the genome using synonymous codons, such that protein sequences, codon use, and codon pair bias are conserved but the nucleic acid sequence is changed. Such recoding does not affect the growth of PV unless it destroys the sequence/structure of a functional RNA element. Using genetic analyses and a method called "signal location search," we detected two unique functionally redundant RNA elements (α and ß), each about 75 nt long and separated by 150 nt, in the 3'-terminal coding sequence of RNA polymerase, 3D(pol). The presence of wild type (WT) α or ß was sufficient for the optimal growth of PV, but the alteration of both segments in the same virus yielded very low titers and tiny plaques. The nucleotide sequences and predicted RNA structures of α and ß have no apparent resemblance to each other. In α, we narrowed down the functional domain to a 48-nt-long, highly conserved segment. The primary determinant of function in ß is a stable and highly conserved hairpin. Reporter constructs showed that the α- and ß-segments are required for RNA replication. Recoding offers a unique and effective method to search for unknown functional RNA elements in coding sequences of RNA viruses, particularly if the signals are redundant in function.
Asunto(s)
Diseño Asistido por Computadora , ARN Polimerasas Dirigidas por ADN/genética , Ingeniería Genética/métodos , Poliovirus/genética , ARN Viral/genética , Replicación Viral/genética , Poliovirus/crecimiento & desarrollo , Estructura Terciaria de Proteína/genéticaRESUMEN
An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.
Asunto(s)
Proteínas Bacterianas/genética , Electroforesis Capilar/normas , Endotoxinas/genética , Análisis de los Alimentos/métodos , Proteínas Hemolisinas/genética , Reacción en Cadena de la Polimerasa Multiplex/normas , Plantas Modificadas Genéticamente , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/aislamiento & purificación , Electroforesis Capilar/métodos , Endotoxinas/aislamiento & purificación , Análisis de los Alimentos/instrumentación , Inocuidad de los Alimentos , Gossypium/genética , Gossypium/crecimiento & desarrollo , Proteínas Hemolisinas/aislamiento & purificación , Humanos , Procedimientos Analíticos en Microchip , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sensibilidad y Especificidad , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrolloRESUMEN
We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using high-resolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decision-making, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.
Asunto(s)
Contaminantes Atmosféricos/análisis , Biocombustibles/análisis , Conservación de los Recursos Naturales , Modelos Teóricos , Biomasa , Productos Agrícolas/química , Geografía , Poaceae/química , Procesos Estocásticos , Estados UnidosRESUMEN
Adeno-associated virus (AAV) is a single-stranded parvovirus retaining the unique capacity for site-specific integration into a transcriptionally silent region of the human genome, a characteristic requiring the functional properties of the Rep 78/68 polypeptide in conjunction with AAV terminal repeat integrating elements. Previous strategies designed to assemble these genetic elements into adenoviral (Ad) backbones have been limited by the general intolerability of AAV Rep sequences, prompting us to computationally reengineer the Rep gene by using synonymous codon pair recoding. Rep mutants generated by using de novo genome synthesis maintained the polypeptide sequence and endonuclease properties of Rep 78, while dramatically enhancing Ad replication and viral titer yields, characteristics indistinguishable from adenovirus lacking coexpressed Rep. Parallel approaches using domain swaps encompassing WT and recoded genomic segments, coupled with iterative computational algorithms, collectively established that 3' cis-acting Rep genetic elements (and not the Rep 78 polypeptide) retain dominant-acting sequences inhibiting Ad replication. These data provide insights into the molecular relationships of AAV Rep and Ad replication, while expanding the applicability of synonymous codon pair reengineering as a strategy to effect phenotypic endpoints.