Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(8): e0183563, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837627

RESUMEN

The key metabolic enzyme phosphoglucomutase 1 (PGM1) controls glucose homeostasis in most human cells. Four proteins related to PGM1, known as PGM2, PGM2L1, PGM3 and PGM5, and referred to herein as paralogs, are encoded in the human genome. Although all members of the same enzyme superfamily, these proteins have distinct substrate preferences and different functional roles. The recent association of PGM1 and PGM3 with inherited enzyme deficiencies prompts us to revisit sequence-structure and other relationships among the PGM1 paralogs, which are understudied despite their importance in human biology. Using currently available sequence, structure, and expression data, we investigated evolutionary relationships, tissue-specific expression profiles, and the amino acid preferences of key active site motifs. Phylogenetic analyses indicate both ancient and more recent divergence between the different enzyme sub-groups comprising the human paralogs. Tissue-specific protein and RNA expression profiles show widely varying patterns for each paralog, providing insight into function and disease pathology. Multiple sequence alignments confirm high conservation of key active site regions, but also reveal differences related to substrate specificity. In addition, we find that sequence variants of PGM2, PGM2L1, and PGM5 verified in the human population affect residues associated with disease-related mutants in PGM1 or PGM3. This suggests that inherited diseases related to dysfunction of these paralogs will likely occur in humans.


Asunto(s)
Perfilación de la Expresión Génica , Mutación , Fosfoglucomutasa/genética , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Filogenia , Homología de Secuencia de Aminoácido
2.
Adv Protein Chem Struct Biol ; 109: 265-304, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683921

RESUMEN

Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.


Asunto(s)
Glucofosfatos/metabolismo , Fosfoglucomutasa/química , Fosfoglucomutasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/química , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/enzimología , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glucofosfatos/química , Glucofosfatos/genética , Humanos , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosfoglucomutasa/genética , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA