Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
2.
Nature ; 584(7821): 403-409, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760000

RESUMEN

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Asunto(s)
Evolución Molecular , Genoma/genética , Filogenia , Reptiles/genética , Animales , Conservación de los Recursos Naturales/tendencias , Femenino , Genética de Población , Lagartos/genética , Masculino , Anotación de Secuencia Molecular , Nueva Zelanda , Caracteres Sexuales , Serpientes/genética , Sintenía
3.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791415

RESUMEN

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Asunto(s)
Bases de Datos Genéticas , Genómica , Internet , Programas Informáticos , Animales , Biología Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/clasificación , Plantas/genética , Vertebrados/clasificación , Vertebrados/genética
4.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137190

RESUMEN

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Genómica/métodos , SARS-CoV-2/genética , Vertebrados/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Pandemias , Vertebrados/clasificación
5.
Nucleic Acids Res ; 48(W1): W538-W545, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32374845

RESUMEN

The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.


Asunto(s)
Familia de Multigenes , Proteoma , Programas Informáticos , Animales , Benchmarking , Consenso , Genómica , Humanos , Ratones , Filogenia , Ratas
6.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31598706

RESUMEN

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Variación Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animales , Caenorhabditis elegans/genética , Genómica , Internet , Anotación de Secuencia Molecular , Fenotipo , Plantas/genética , Valores de Referencia , Programas Informáticos , Interfaz Usuario-Computador
7.
Genome Res ; 28(4): 448-459, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29563166

RESUMEN

Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.


Asunto(s)
Evolución Molecular , Genoma/genética , Muridae/genética , Filogenia , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Cromosomas/genética , Cariotipificación/métodos , Elementos de Nucleótido Esparcido Largo/genética , Ratones , Retroelementos/genética , Especificidad de la Especie
8.
Mol Biol Evol ; 36(10): 2157-2164, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241141

RESUMEN

Gene families evolve by the processes of speciation (creating orthologs), gene duplication (paralogs), and horizontal gene transfer (xenologs), in addition to sequence divergence and gene loss. Orthologs in particular play an essential role in comparative genomics and phylogenomic analyses. With the continued sequencing of organisms across the tree of life, the data are available to reconstruct the unique evolutionary histories of tens of thousands of gene families. Accurate reconstruction of these histories, however, is a challenging computational problem, and the focus of the Quest for Orthologs Consortium. We review the recent advances and outstanding challenges in this field, as revealed at a symposium and meeting held at the University of Southern California in 2017. Key advances have been made both at the level of orthology algorithm development and with respect to coordination across the community of algorithm developers and orthology end-users. Applications spanned a broad range, including gene function prediction, phylostratigraphy, genome evolution, and phylogenomics. The meetings highlighted the increasing use of meta-analyses integrating results from multiple different algorithms, and discussed ongoing challenges in orthology inference as well as the next steps toward improvement and integration of orthology resources.


Asunto(s)
Evolución Molecular , Genómica/tendencias , Familia de Multigenes , Algoritmos , Animales , Genómica/métodos , Humanos
9.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29155950

RESUMEN

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Asunto(s)
Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Genoma , Difusión de la Información , Animales , Epigenómica , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Vertebrados/genética , Navegador Web
10.
Nat Methods ; 13(5): 425-30, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27043882

RESUMEN

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


Asunto(s)
Biología Computacional/normas , Genómica/normas , Filogenia , Proteómica/normas , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Eucariontes/clasificación , Eucariontes/genética , Ontología de Genes , Genómica/métodos , Modelos Genéticos , Proteómica/métodos , Análisis de Secuencia de Proteína , Homología de Secuencia , Especificidad de la Especie
11.
Bioinformatics ; 34(2): 323-329, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28968857

RESUMEN

The Quest for Orthologs (QfO) is an open collaboration framework for experts in comparative phylogenomics and related research areas who have an interest in highly accurate orthology predictions and their applications. We here report highlights and discussion points from the QfO meeting 2015 held in Barcelona. Achievements in recent years have established a basis to support developments for improved orthology prediction and to explore new approaches. Central to the QfO effort is proper benchmarking of methods and services, as well as design of standardized datasets and standardized formats to allow sharing and comparison of results. Simultaneously, analysis pipelines have been improved, evaluated and adapted to handle large datasets. All this would not have occurred without the long-term collaboration of Consortium members. Meeting regularly to review and coordinate complementary activities from a broad spectrum of innovative researchers clearly benefits the community. Highlights of the meeting include addressing sources of and legitimacy of disagreements between orthology calls, the context dependency of orthology definitions, special challenges encountered when analyzing very anciently rooted orthologies, orthology in the light of whole-genome duplications, and the concept of orthologous versus paralogous relationships at different levels, including domain-level orthology. Furthermore, particular needs for different applications (e.g. plant genomics, ancient gene families and others) and the infrastructure for making orthology inferences available (e.g. interfaces with model organism databases) were discussed, with several ongoing efforts that are expected to be reported on during the upcoming 2017 QfO meeting.

12.
Nature ; 496(7446): 498-503, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23594743

RESUMEN

Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.


Asunto(s)
Secuencia Conservada/genética , Genoma/genética , Pez Cebra/genética , Animales , Cromosomas/genética , Evolución Molecular , Femenino , Genes/genética , Genoma Humano/genética , Genómica , Humanos , Masculino , Meiosis/genética , Anotación de Secuencia Molecular , Seudogenes/genética , Estándares de Referencia , Procesos de Determinación del Sexo/genética , Proteínas de Pez Cebra/genética
13.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899575

RESUMEN

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Motor de Búsqueda , Programas Informáticos , Navegador Web , Animales , Minería de Datos , Evolución Molecular , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Especificidad de la Especie , Vertebrados
14.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26687719

RESUMEN

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Asunto(s)
Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Genes , Variación Genética , Humanos , Internet , Ratones , Proteínas/genética , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos
15.
Nucleic Acids Res ; 43(Database issue): D682-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378326

RESUMEN

The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Secuencia de Bases , Gráficos por Computador , Secuencia Conservada , ADN Intergénico/química , Evolución Molecular , Orden Génico , Genoma , Humanos , Internet , Filogenia , Análisis de Secuencia de Proteína , Vertebrados/genética
16.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352552

RESUMEN

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Animales , Epigénesis Genética , Variación Genética , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos
17.
Syst Biol ; 64(5): 778-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26031838

RESUMEN

Phylogenetic inference is generally performed on the basis of multiple sequence alignments (MSA). Because errors in an alignment can lead to errors in tree estimation, there is a strong interest in identifying and removing unreliable parts of the alignment. In recent years several automated filtering approaches have been proposed, but despite their popularity, a systematic and comprehensive comparison of different alignment filtering methods on real data has been lacking. Here, we extend and apply recently introduced phylogenetic tests of alignment accuracy on a large number of gene families and contrast the performance of unfiltered versus filtered alignments in the context of single-gene phylogeny reconstruction. Based on multiple genome-wide empirical and simulated data sets, we show that the trees obtained from filtered MSAs are on average worse than those obtained from unfiltered MSAs. Furthermore, alignment filtering often leads to an increase in the proportion of well-supported branches that are actually wrong. We confirm that our findings hold for a wide range of parameters and methods. Although our results suggest that light filtering (up to 20% of alignment positions) has little impact on tree accuracy and may save some computation time, contrary to widespread practice, we do not generally recommend the use of current alignment filtering methods for phylogenetic inference. By providing a way to rigorously and systematically measure the impact of filtering on alignments, the methodology set forth here will guide the development of better filtering algorithms.


Asunto(s)
Algoritmos , Clasificación/métodos , Filogenia , Genoma/genética , Reproducibilidad de los Resultados , Alineación de Secuencia
18.
Nucleic Acids Res ; 42(Database issue): D922-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24194607

RESUMEN

TreeFam (http://www.treefam.org) is a database of phylogenetic trees inferred from animal genomes. For every TreeFam family we provide homology predictions together with the evolutionary history of the genes. Here we describe an update of the TreeFam database. The TreeFam project was resurrected in 2012 and has seen two releases since. The latest release (TreeFam 9) was made available in March 2013. It has orthology predictions and gene trees for 109 species in 15,736 families covering ∼2.2 million sequences. With release 9 we made modifications to our production pipeline and redesigned our website with improved gene tree visualizations and Wikipedia integration. Furthermore, we now provide an HMM-based sequence search that places a user-provided protein sequence into a TreeFam gene tree and provides quick orthology prediction. The tool uses Mafft and RAxML for the fast insertion into a reference alignment and tree, respectively. Besides the aforementioned technical improvements, we present a new approach to visualize gene trees and alternative displays that focuses on showing homology information from a species tree point of view. From release 9 onwards, TreeFam is now hosted at the EBI.


Asunto(s)
Bases de Datos Genéticas , Familia de Multigenes , Filogenia , Animales , Genoma , Internet
19.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316576

RESUMEN

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Cordados/genética , Variación Genética , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Fenotipo , Ratas
20.
Nucleic Acids Res ; 41(Database issue): D700-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193262

RESUMEN

Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Eucariontes/genética , Genómica , Animales , Evolución Molecular , Orden Génico , Genoma Fúngico , Genoma de Planta , Humanos , Internet , Alineación de Secuencia , Programas Informáticos , Sintenía , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA