Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circ Res ; 135(1): 41-56, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712557

RESUMEN

BACKGROUND: Inflammation is pathogenically implicated in pulmonary arterial hypertension; however, it has not been adequately targeted therapeutically. We investigated whether neuromodulation of an anti-inflammatory neuroimmune pathway involving the splenic nerve using noninvasive, focused ultrasound stimulation of the spleen (sFUS) can improve experimental pulmonary hypertension. METHODS: Pulmonary hypertension was induced in rats either by Sugen 5416 (20 mg/kg SQ) injection, followed by 21 (or 35) days of hypoxia (sugen/hypoxia model), or by monocrotaline (60 mg/kg IP) injection (monocrotaline model). Animals were randomized to receive either 12-minute-long sessions of sFUS daily or sham stimulation for 14 days. Catheterizations, echocardiography, indices of autonomic function, lung and heart histology and immunohistochemistry, spleen flow cytometry, and lung single-cell RNA sequencing were performed after treatment to assess the effects of sFUS. RESULTS: Splenic denervation right before induction of pulmonary hypertension results in a more severe disease phenotype. In both sugen/hypoxia and monocrotaline models, sFUS treatment reduces right ventricular systolic pressure by 25% to 30% compared with sham treatment, without affecting systemic pressure, and improves right ventricular function and autonomic indices. sFUS reduces wall thickness, apoptosis, and proliferation in small pulmonary arterioles, suppresses CD3+ and CD68+ cell infiltration in lungs and right ventricular fibrosis and hypertrophy and lowers BNP (brain natriuretic peptide). Beneficial effects persist for weeks after sFUS discontinuation and are more robust with early and longer treatment. Splenic denervation abolishes sFUS therapeutic benefits. sFUS partially normalizes CD68+ and CD8+ T-cell counts in the spleen and downregulates several inflammatory genes and pathways in nonclassical and classical monocytes and macrophages in the lung. Differentially expressed genes in those cell types are significantly enriched for human pulmonary arterial hypertension-associated genes. CONCLUSIONS: sFUS causes dose-dependent, sustained improvement of hemodynamic, autonomic, laboratory, and pathological manifestations in 2 models of experimental pulmonary hypertension. Mechanistically, sFUS normalizes immune cell populations in the spleen and downregulates inflammatory genes and pathways in the lung, many of which are relevant in human disease.


Asunto(s)
Hipertensión Pulmonar , Bazo , Animales , Bazo/metabolismo , Masculino , Ratas , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Ondas Ultrasónicas
2.
J Neuroinflammation ; 20(1): 236, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848937

RESUMEN

BACKGROUND: The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits. METHODS: In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves. We defined the stimulus-elicited charge generated at the oxidation potential for NE (~ 0.88 V) as the "NE voltammetry signal" and quantified the dependence of the signal on NE dose and intensity of neurostimulation. We correlated the NE voltammetry signal with the anti-inflammatory effect of splenic nerve stimulation (SpNS) in a model of lipopolysaccharide- (LPS) induced endotoxemia, quantified as suppression of TNF release. RESULTS: The NE voltammetry signal is proportional to the estimated peak NE blood concentration, with 0.1 µg/mL detection threshold. In response to SpNS, the signal increases within seconds, returns to baseline minutes later, and is blocked by interventions that deplete NE or inhibit NE release. The signal is elicited by efferent, but not afferent, electrical or optogenetic vagus nerve stimulation, and by splanchnic nerve stimulation. The magnitude of the signal during SpNS is inversely correlated with subsequent TNF suppression in endotoxemia and explains 40% of the variance in TNF measurements. CONCLUSIONS: FSCV in the spleen provides a marker for real-time monitoring of anti-inflammatory activation of the splenic innervation during autonomic stimulation.


Asunto(s)
Endotoxemia , Norepinefrina , Ratones , Animales , Bazo/fisiología , Nervio Vago/fisiología , Antiinflamatorios , Estimulación Eléctrica
3.
Mol Med ; 28(1): 148, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494621

RESUMEN

BACKGROUND: Autoinflammatory diseases, a diverse group of inherited conditions characterized by excessive innate immune activation, have limited therapeutic options. Neuroimmune circuits of the inflammatory reflex control innate immune overactivation and can be stimulated to treat disease using the acetylcholinesterase inhibitor galantamine. METHODS: We tested the efficacy of galantamine in a rodent model of the prototypical autoinflammatory disease familial Mediterranean fever (FMF). Multiple chronic disease markers were evaluated in animals that received long-term galantamine treatment compared to vehicle. RESULTS: Long-term treatment with galantamine attenuated the associated splenomegaly and anemia which are characteristic features of this disease. Further, treatment reduced inflammatory cell infiltration into affected organs and a subcutaneous air pouch. CONCLUSIONS: These findings suggest that galantamine attenuates chronic inflammation in this mouse model of FMF. Further research is warranted to explore the therapeutic potential of galantamine in FMF and other autoinflammatory diseases.


Asunto(s)
Fiebre Mediterránea Familiar , Ratones , Animales , Fiebre Mediterránea Familiar/tratamiento farmacológico , Galantamina/farmacología , Galantamina/uso terapéutico , Acetilcolinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico
4.
Sci Adv ; 10(17): eadn3760, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669336

RESUMEN

Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.


Asunto(s)
Linfocitos B , Centro Germinal , Receptores Nicotínicos , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Centro Germinal/metabolismo , Centro Germinal/inmunología , Estimulación del Nervio Vago/métodos , Linfocitos B/metabolismo , Linfocitos B/inmunología , Ratones , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/inmunología , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Inmunoglobulina G/inmunología , Nervio Vago/metabolismo , Nervio Vago/fisiología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37506989

RESUMEN

Autonomic dysfunction and chronic inflammation contribute to the pathogenesis and progression of several cardiovascular diseases (CVD), such as heart failure with preserved ejection fraction, atherosclerotic CVD, pulmonary arterial hypertension, and atrial fibrillation. The vagus nerve provides parasympathetic innervation to the heart, vessels, and lungs, and is also implicated in the neural control of inflammation through a neuroimmune pathway involving the spleen. Stimulation of the vagus nerve (VNS) can in principle restore autonomic balance and suppress inflammation, with potential therapeutic benefits in these diseases. Although VNS ameliorated CVD in several animal models, early human studies have demonstrated variable efficacy. The purpose of this review is to discuss the rationale behind the use of VNS in the treatment of CVD, to critically review animal and human studies of VNS in CVD, and to propose possible means to overcome the challenges in the clinical translation of VNS in CVD.

6.
Brain Stimul ; 16(2): 484-506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773779

RESUMEN

Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.


Asunto(s)
Estimulación del Nervio Vago , Animales , Porcinos , Estimulación del Nervio Vago/métodos , Microtomografía por Rayos X , Nervio Vago/fisiología , Potenciales de Acción , Frecuencia Cardíaca
7.
Front Immunol ; 13: 892086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784337

RESUMEN

Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.


Asunto(s)
Neumonía , Bazo , Antiinflamatorios/farmacología , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Neumonía/metabolismo , Nervio Vago/fisiología
8.
Biosens Bioelectron ; 200: 113886, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34995836

RESUMEN

Novel research in the field of bioelectronic medicine requires neuromodulation systems that pair high-performance neurostimulation and bio-signal acquisition hardware with advanced signal processing and control algorithms. Although mice are the most commonly used animal in medical research, the size, weight, and power requirements of such bioelectronic systems either preclude use in mice or impose significant constraints on experimental design. Here, a fully-implantable recording and stimulation neuromodulation system suitable for use in mice is presented, measuring 2.2 cm3 and weighing 2.8 g. The bidirectional wireless interface allows simultaneous readout of multiple physiological signals and complete control over stimulation parameters, and a wirelessly rechargeable battery provides a lifetime of up to 5 days on a single charge. The device was implanted to deliver vagus nerve stimulation (n = 12 animals) and a functional neural interface (capable of inducing acute bradycardia) was demonstrated with lifetimes exceeding three weeks. The design utilizes only commercially-available electrical components and 3D-printed packaging, with the goal of facilitating widespread adoption and accelerating discovery and translation of future bioelectronic therapeutics.


Asunto(s)
Técnicas Biosensibles , Tecnología Inalámbrica , Animales , Suministros de Energía Eléctrica , Ratones , Prótesis e Implantes , Procesamiento de Señales Asistido por Computador
9.
Brain Stimul ; 15(6): 1389-1404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36241025

RESUMEN

BACKGROUND: Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved. METHODS: We stimulated the vagus in rats and mice using trains of kHz-frequency stimuli. Stimulation effects were assessed using neuronal c-Fos expression, physiological and nerve fiber responses, optogenetic and computational methods. RESULTS: Intermittent kHz stimulation for 30 min activates specific motor and, preferentially, sensory vagus neurons in the brainstem. At sufficiently high frequencies (>5 kHz) and at intensities within a specific range (7-10 times activation threshold, T, in rats; 15-25 × T in mice), C-afferents are activated, whereas larger, A- and B-fibers, are blocked. This was determined by measuring fiber-specific acute physiological responses to kHz stimulus trains, and by assessing fiber excitability around kHz stimulus trains through compound action potentials evoked by probing pulses. Aspects of selective activation of C-afferents are explained in computational models of nerve fibers by how fiber size and myelin shape the response of sodium channels to kHz-frequency stimuli. CONCLUSION: kHz stimulation is a neuromodulation strategy to robustly and selectively activate vagal C-afferents implicated in physiological homeostasis and disease, over larger vagal fibers.


Asunto(s)
Fibras Nerviosas Mielínicas , Nervio Vago , Ratas , Animales , Ratones , Ratas Sprague-Dawley , Nervio Vago/fisiología , Fibras Nerviosas Mielínicas/fisiología , Células Receptoras Sensoriales , Estimulación Eléctrica/métodos , Neuronas Aferentes/fisiología
10.
Nat Commun ; 13(1): 7127, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443291

RESUMEN

Peptides, polymers of amino acids, comprise a vital and expanding therapeutic approach. Their rapid degradation by proteases, however, represents a major limitation to their therapeutic utility and chemical modifications to native peptides have been employed to mitigate this weakness. Herein, we describe functionalized thiocarbazate scaffolds as precursors of aza-amino acids, that, upon activation, can be integrated in a peptide sequence to generate azapeptides using conventional peptide synthetic methods. This methodology facilitates peptide editing-replacing targeted amino acid(s) with aza-amino acid(s) within a peptide-to form azapeptides with preferred therapeutic characteristics (extending half-life/bioavailability, while at the same time typically preserving structural features and biological activities). We demonstrate the convenience of this azapeptide synthesis platform in two well-studied peptides with short half-lives: FSSE/P5779, a tetrapeptide inhibitor of HMGB1/MD-2/TLR4 complex formation, and bradykinin, a nine-residue vasoactive peptide. This bench-stable thiocarbazate platform offers a robust and universal approach to optimize peptide-based therapeutics.


Asunto(s)
Aminoácidos , Bradiquinina , Semivida , Péptido Hidrolasas , Endopeptidasas
11.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821789

RESUMEN

Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.


Asunto(s)
Electrodos Implantados/estadística & datos numéricos , Ratones/fisiología , Estimulación del Nervio Vago/instrumentación , Nervio Vago/fisiología , Animales , Fenómenos Electrofisiológicos , Masculino , Ratones Endogámicos C57BL , Modelos Animales
12.
Brain Stimul ; 13(6): 1617-1630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32956868

RESUMEN

BACKGROUND: Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. OBJECTIVE: Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. METHODS: In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. RESULTS: In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS.


Asunto(s)
Potenciales de Acción/fisiología , Frecuencia Cardíaca/fisiología , Fibras Nerviosas/fisiología , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Animales , Electromiografía/métodos , Potenciales Evocados/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Mecánica Respiratoria/fisiología
13.
Front Integr Neurosci ; 10: 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445719

RESUMEN

Anxiety disorders, including generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic anxiety disorder (PAD), are a group of common psychiatric conditions. They are characterized by excessive worrying, uneasiness, and fear of future events, such that they affect social and occupational functioning. Anxiety disorders can alter behavior and cognition as well, yet little is known about the particular domains they affect. In this study, we tested the cognitive correlates of medication-free patients with GAD, SAD, and PAD, along with matched healthy participants using a probabilistic category-learning task that allows the dissociation between positive and negative feedback learning. We also fitted all participants' data to a Q-learning model and various actor-critic models that examine learning rate parameters from positive and negative feedback to investigate effects of valence vs. action on performance. SAD and GAD patients were more sensitive to negative feedback than either PAD patients or healthy participants. PAD, SAD, and GAD patients did not differ in positive-feedback learning compared to healthy participants. We found that Q-learning models provide the simplest fit of the data in comparison to other models. However, computational analysis revealed that groups did not differ in terms of learning rate or exploration values. These findings argue that (a) not all anxiety spectrum disorders share similar cognitive correlates, but are rather different in ways that do not link them to the hallmark of anxiety (higher sensitivity to negative feedback); and (b) perception of negative consequences is the core feature of GAD and SAD, but not PAD. Further research is needed to examine the similarities and differences between anxiety spectrum disorders in other cognitive domains and potential implementation of behavioral therapy to remediate cognitive deficits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA