Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316991

RESUMEN

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Asunto(s)
Neoplasias de la Próstata , Canales Catiónicos TRPM , Humanos , Masculino , Andrógenos , Inflamación/genética , Factor 3 Regulador del Interferón , Proteínas de la Membrana , FN-kappa B/genética , Neoplasias de la Próstata/genética , Receptor Toll-Like 3/genética , Canales Catiónicos TRPM/genética , Animales
2.
Cell ; 152(3): 504-18, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374346

RESUMEN

Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ubiquinona/análogos & derivados , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Dimetilaliltranstransferasa/genética , Aparato de Golgi/metabolismo , Corazón/embriología , Humanos , Miocardio/citología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
3.
Nat Methods ; 18(3): 293-302, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649590

RESUMEN

The architecture of chromatin regulates eukaryotic cell states by controlling transcription factor access to sites of gene regulation. Here we describe a dual transposase-peroxidase approach, integrative DNA and protein tagging (iDAPT), which detects both DNA (iDAPT-seq) and protein (iDAPT-MS) associated with accessible regions of chromatin. In addition to direct identification of bound transcription factors, iDAPT enables the inference of their gene regulatory networks, protein interactors and regulation of chromatin accessibility. We applied iDAPT to profile the epigenomic consequences of granulocytic differentiation of acute promyelocytic leukemia, yielding previously undescribed mechanistic insights. Our findings demonstrate the power of iDAPT as a platform for studying the dynamic epigenomic landscapes and their transcription factor components associated with biological phenomena and disease.


Asunto(s)
Cromatina/metabolismo , ADN/genética , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Leucemia Promielocítica Aguda/genética , Redes Reguladoras de Genes , Humanos , Leucemia Promielocítica Aguda/patología , Factores de Transcripción/metabolismo
4.
J Extracell Biol ; 2(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38046436

RESUMEN

Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (ONe Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n=64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports the ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.

5.
Cancer Lett ; 524: 57-69, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656688

RESUMEN

Growing bodies of evidence have demonstrated that the identification of prostate cancer (PCa) biomarkers in the patients' blood and urine may remarkably improve PCa diagnosis and progression monitoring. Among diverse cancer-derived circulating materials, extracellular RNA molecules (exRNAs) represent a compelling component to investigate cancer-related alterations. Once outside the intracellular environment, exRNAs circulate in biofluids either in association with protein complexes or encapsulated inside extracellular vesicles (EVs). Notably, EV-associated RNAs (EV-RNAs) were used for the development of several assays (such as the FDA-approved Progensa Prostate Cancer Antigen 3 (PCA3 test) aiming at improving early PCa detection. EV-RNAs encompass a mixture of species, including small non-coding RNAs (e.g. miRNA and circRNA), lncRNAs and mRNAs. Several methods have been proposed to isolate EVs and relevant RNAs, and to perform RNA-Seq studies to identify potential cancer biomarkers. However, EVs in the circulation of a cancer patient include a multitude of diverse populations that are released by both cancer and normal cells from different tissues, thereby leading to a heterogeneous EV-RNA-associated transcriptional signal. Decrypting the complexity of such a composite signal is nowadays the major challenge faced in the identification of specific tumor-associated RNAs. Multiple deconvolution algorithms have been proposed so far to infer the enrichment of cancer-specific signals from gene expression data. However, novel strategies for EVs sorting and sequencing of RNA associated to single EVs populations will remarkably facilitate the identification of cancer-related molecules. Altogether, the studies summarized here demonstrate the high potential of using EV-RNA biomarkers in PCa and highlight the urgent need of improving technologies and computational approaches to characterize specific EVs populations and their relevant RNA cargo.


Asunto(s)
Antígenos de Neoplasias/genética , Ácidos Nucleicos Libres de Células/genética , MicroARNs/genética , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/genética , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , RNA-Seq
6.
Cell Res ; 29(6): 446-459, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31024166

RESUMEN

Although targeted therapies have proven effective and even curative in human leukaemia, resistance often ensues. IDH enzymes are mutated in ~20% of human AML, with targeted therapies under clinical evaluation. We here characterize leukaemia evolution from mutant IDH2 (mIDH2)-dependence to independence identifying key targetable vulnerabilities of mIDH2 leukaemia that are retained during evolution and progression from early to late stages. Mechanistically, we find that mIDH2 leukaemia are metastable and vulnerable at two distinct levels. On the one hand, they are characterized by oxidative and genotoxic stress, in spite of increased 1-carbon metabolism and glutathione levels. On the other hand, mIDH2 leukaemia display inhibition of LSD1 and a resulting transcriptional signature of all-trans retinoic acid (ATRA) sensitization, in spite of a state of suppressed ATRA signalling due to increased levels of PIN1. We further identify GSH/ROS and PIN1/LSD1 as critical nodes for leukaemia maintenance and the combination of ATRA and arsenic trioxide (ATO) as a key therapeutic modality to target these vulnerabilities. Strikingly, we demonstrate that the combination of ATRA and ATO proves to be a powerfully synergistic and effective therapy in a number of mouse and human mIDH1/2 leukemic models. Thus, our findings pave the way towards the treatment of a sizable fraction of human AMLs through targeted APL-like combinatorial therapies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Trióxido de Arsénico/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Tretinoina/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Células Tumorales Cultivadas , Células U937
7.
J Chromatogr A ; 1412: 59-66, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283533

RESUMEN

The analysis of lipid molecules in living organism is an important step in deciphering metabolic pathways. Recently, the zebrafish has been adopted as a valuable animal model system to perform in vivo metabolomics studies, however limited methodologies and protocols are currently available to investigate zebrafish lipidome and even fewer to analyze specific classes of lipids. Here we present an HPLC-HRMS based method to rapidly measure multiple prenol lipid molecules from zebrafish tissues. In particular, we have optimized our method for concurrent detection of ubiquinones (Coenzyme Q6, Coenzyme Q9, Coenzyme Q10), cholesterol, vitamin E (α-tocopherol), vitamin K1 and vitamin K2. The purpose of this study was to compare different ionization modes, mobile phases and stationary phases in order to optimize lipid molecules separation. After HPLC-HRMS parameters selection, several extraction conditions from zebrafish embryos were evaluated. We assessed our methodology by quantitation of analytical recovery on zebrafish extracts from wild-type or zebrafish mutants (barolo) affected by impaired biosynthesis of ubiquinones.


Asunto(s)
Pentanoles/análisis , Pez Cebra/metabolismo , Animales , Colesterol/análisis , Cromatografía Líquida de Alta Presión/métodos , Embrión no Mamífero/metabolismo , Hemiterpenos , Espectrometría de Masas/métodos , Mutación , Ubiquinona/análisis , Vitamina E/análisis , Vitamina K 1/análisis , Vitamina K 2/análisis , Pez Cebra/genética , alfa-Tocoferol/análisis
8.
J Vis Exp ; (89)2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25046434

RESUMEN

High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a "whole embryo ROS-detection method" for qualitative measurement of oxidative stress and ii) a "single-cell ROS detection method" for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.


Asunto(s)
Estrés Oxidativo/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/metabolismo , Femenino , Masculino , Especies Reactivas de Oxígeno/metabolismo
9.
Nat Protoc ; 8(12): 2337-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24177291

RESUMEN

Metabolism has a decisive role in many fundamental biological processes, including organism development and tissue homeostasis. Here we describe a protocol for fast and reliable (13)C-isotope-based in vivo metabolic profiling. This protocol covers the loading of isotope precursor; extraction, preparation and quantification of the labeled lipid metabolites (e.g., the prenyl lipid CoQ10) by the means of HPLC-MS; and its analysis in zebrafish embryos. This protocol can be applied to different types of experimental settings, including tissue-specific metabolic analyses or dynamic metabolic changes that occur during vertebrate embryogenesis. The protocol takes 5-7 d to complete, requiring minimal equipment and analytical expertise, and it represents a unique alternative to the existing ex vivo (e.g., cell lines) isotope-based metabolic methods. This procedure represents a valuable approach for researchers interested in studying the effect of gene manipulation on lipid metabolism in zebrafish and in understanding the genetic conditions that result in metabolism dysfunction.


Asunto(s)
Metabolismo de los Lípidos , Metaboloma , Metabolómica/métodos , Pez Cebra/metabolismo , Animales , Isótopos de Carbono , Cromatografía Líquida de Alta Presión , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Espectrometría de Masas , Prenilación , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
PLoS One ; 6(7): e21908, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21747967

RESUMEN

The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.


Asunto(s)
Sacos Aéreos/enzimología , Catepsina D/deficiencia , Catepsina D/genética , Técnicas de Silenciamiento del Gen , Epitelio Pigmentado de la Retina/enzimología , Pez Cebra/genética , Pez Cebra/fisiología , Sacos Aéreos/embriología , Sacos Aéreos/crecimiento & desarrollo , Animales , Secuencia de Bases , Tamaño Corporal/genética , Desarrollo Embrionario/genética , Humanos , Longevidad/genética , Mutación , Oligonucleótidos/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA