Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(2): 332-349, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062836

RESUMEN

OBJECTIVE: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.


Asunto(s)
Discapacidad Intelectual , Neuroblastoma , Humanos , Células HEK293 , Fenotipo , Genotipo , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Canales de potasio activados por Sodio/genética
2.
Am J Hum Genet ; 107(4): 683-697, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853554

RESUMEN

More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data. Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo variants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with "complex febrile seizures" (HP: 0011172; p = 2.1 × 10-5) and "focal clonic seizures" (HP: 0002266; p = 8.9 × 10-6), STXBP1 with "absent speech" (HP: 0001344; p = 1.3 × 10-11), and SLC6A1 with "EEG with generalized slow activity" (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Munc18/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Espasmos Infantiles/genética , Trastornos del Habla/genética , Preescolar , Estudios de Cohortes , Femenino , Expresión Génica , Ontología de Genes , Humanos , Masculino , Mutación , Fenotipo , Convulsiones/clasificación , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Semántica , Canales de Potasio Shab/genética , Espasmos Infantiles/clasificación , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/fisiopatología , Trastornos del Habla/clasificación , Trastornos del Habla/diagnóstico , Trastornos del Habla/fisiopatología , Terminología como Asunto , Secuenciación del Exoma
3.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
4.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576218

RESUMEN

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Asunto(s)
Dominio Catalítico/genética , Metaloendopeptidasas/genética , Mutación/genética , Degeneración Nerviosa/genética , Niño , Preescolar , Dermis/patología , Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Hierro-Azufre/genética , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Linaje , Proto-Oncogenes Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidasa de Procesamiento Mitocondrial
5.
Epilepsia ; 62(10): 2518-2527, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34378197

RESUMEN

OBJECTIVE: Dravet syndrome (DS) is a rare but severe drug-resistant epilepsy. Before the approval of fenfluramine (FFA) for the treatment of seizures in DS, patients in Germany could receive treatment under a compassionate use program (CUP). METHODS: We conducted a multicenter, retrospective, observational study to describe the efficacy, tolerability, and retention of FFA within the CUP. Patients received add-on therapy with oral FFA gradually titrated to a target dose between .13 and .7 mg/kg/day. RESULTS: Overall, 78 patients with DS (median age = 8.0 years, range = 2.1-46.0; 53% female, median concomitant antiseizure medications [ASMs] = 3) were treated with FFA for a median duration of 255.5 days (range = 31-572). Responder rates (a ≥50% reduction; n = 78) and seizure-freedom rates at 3 months were 68% and 14% for total seizures, respectively, and 67% and 23% for generalized tonic-clonic seizures. Responder rates were consistent at 6 and 12 months (n = 66 and n = 43, respectively). Median seizure days per month significantly decreased from 10.0 (range = .5-30) to 3.0 (range = 0-30) in the 3-month period before and after FFA treatment (p < .001). Significantly fewer patients reported at least one episode of status epilepticus (28% vs. 14% patients before and after FFA initiation, p = .005). During FFA treatment, 35 (45%) patients were able to discontinue a concomitant ASM. At the last follow-up date, 66 (85%) patients remained on treatment with FFA. The most common adverse events were somnolence (36%), decreased appetite (22%), and ataxia (8%). Forty-eight (62%) patients were reported as having a meaningful global clinical improvement. SIGNIFICANCE: In a large cohort of patients, FFA demonstrated efficacy across a range of outcomes including clinically significant reductions in convulsive seizures, and was well tolerated, providing valuable information for real-world practice.


Asunto(s)
Ensayos de Uso Compasivo , Epilepsias Mioclónicas , Adolescente , Adulto , Anticonvulsivantes/efectos adversos , Niño , Preescolar , Epilepsias Mioclónicas/inducido químicamente , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/tratamiento farmacológico , Síndromes Epilépticos , Femenino , Fenfluramina/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Convulsiones/complicaciones , Espasmos Infantiles , Resultado del Tratamiento , Adulto Joven
6.
Neuropediatrics ; 51(5): 368-372, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32392612

RESUMEN

Patients with neurofibromatosis type 1 (NF1) have an increased risk for West syndrome (WS), but the underlying mechanisms linking NF1 and WS are unknown. In contrast to other neurocutaneous syndromes, intracerebral abnormalities explaining the course of infantile spasms (IS) are often absent and the seizure outcome is usually favorable. Several studies have investigated a potential genotype-phenotype correlation between NF1 and seizure susceptibility, but an association was not identified. Therefore, we identified three patients with NF1-related WS (NF1-WS) in a cohort of 51 NF1 patients and performed whole-exome sequencing (WES) to identify genetic modifiers. In two NF1 patients with WS and good seizure outcome, we did not identify variants in epilepsy-related genes. However, in a single patient with NF1-WS and transition to drug-resistant epilepsy, we identified a de novo variant in KCNC2 (c.G499T, p.D167Y) coding for Kv3.2 as a previously undescribed potassium channel to be correlated to epilepsy. Electrophysiological studies of the identified KCNC2 variant demonstrated both a strong loss-of-function effect for the current amplitude and a gain-of-function effect for the channel activation recommending a complex network effect. These results suggest that systematic genetic analysis for potentially secondary genetic etiologies in NF1 patients and severe epilepsy presentations should be done.


Asunto(s)
Neurofibromatosis 1/genética , Canales de Potasio Shaw/genética , Espasmos Infantiles/genética , Comorbilidad , Humanos , Lactante , Secuenciación del Exoma
7.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817854

RESUMEN

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Animales , Biopsia , Células CHO , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Cricetulus , Femenino , Humanos , Masculino , Mutación
8.
Genet Med ; 21(3): 601-607, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30245509

RESUMEN

PURPOSE: TANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants. METHODS: We present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2. RESULTS: The initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder. CONCLUSION: TANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Adolescente , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Encefalopatías/genética , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Exoma , Familia , Femenino , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Linaje , Fenotipo , Convulsiones/genética , Secuenciación del Exoma/métodos
10.
Brain ; 140(5): 1316-1336, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379373

RESUMEN

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Trastornos del Neurodesarrollo/genética , Bloqueadores de los Canales de Sodio/uso terapéutico , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Dinamarca/epidemiología , Epilepsia/epidemiología , Femenino , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
11.
Neuropediatrics ; 49(5): 342-346, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29801192

RESUMEN

Mutations in the ATP1A3 gene are known to cause alternating hemiplegia of childhood (AHC) and rapid-onset dystonia parkinsonism (RDP). Both conditions are childhood-onset neurological disorders with distinct symptoms and different times of onset. ATP1A3 has also been associated with CAPOS syndrome (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss). Within the various ATP1A3-related neurological syndromes, a specific genotype-phenotype correlation is starting to emerge. Several mutations such as the relatively common p.E815K pathogenic variant have been shown to strongly correlate with AHC, while others may cause both AHC and RDP. A significant subset of patients with AHC and RDP are reported to have epileptic seizures. Even though detailed clinical descriptions of seizures in childhood are rare, seizures involving apneic events seem to be frequent in ATP1A3-related neurological disorders. Here, we describe two children with unexplained severe apnea beginning around the first year of life and pathogenic variants in ATP1A3. We hypothesize that the symptoms are early-onset autonomic seizures related to the underlying pathogenic ATP1A3 variants.


Asunto(s)
Apnea/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Edad de Inicio , Preescolar , Femenino , Humanos
12.
PLoS Genet ; 11(5): e1005226, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25950944

RESUMEN

Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.


Asunto(s)
Epilepsia Generalizada/genética , Trastornos del Neurodesarrollo/genética , Eliminación de Secuencia , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Reordenamiento Génico , Estudios de Asociación Genética , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Dominios y Motivos de Interacción de Proteínas , Adulto Joven
13.
Hum Mol Genet ; 24(11): 3082-91, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25691535

RESUMEN

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Galanina/genética , Adulto , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Mutación Missense , Linaje , Unión Proteica , Transducción de Señal
14.
Ann Neurol ; 77(6): 972-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25726841

RESUMEN

OBJECTIVE: To test whether mutations in γ-aminobutyric acid type A receptor (GABAA -R) subunit genes contribute to the etiology of rolandic epilepsy (RE) or its atypical variants (ARE). METHODS: We performed exome sequencing to compare the frequency of variants in 18 GABAA -R genes in 204 European patients with RE/ARE versus 728 platform-matched controls. Identified GABRG2 variants were functionally assessed for protein stability, trafficking, postsynaptic clustering, and receptor function. RESULTS: Of 18 screened GABAA -R genes, we detected an enrichment of rare variants in the GABRG2 gene in RE/ARE patients (5 of 204, 2.45%) in comparison to controls (1 of 723, 0.14%; odds ratio = 18.07, 95% confidence interval = 2.01-855.07, p = 0.0024, pcorr = 0.043). We identified a GABRG2 splice variant (c.549-3T>G) in 2 unrelated patients as well as 3 nonsynonymous variations in this gene (p.G257R, p.R323Q, p.I389V). Functional assessment showed reduced surface expression of p.G257R and decreased GABA-evoked currents for p.R323Q. The p.G257R mutation displayed diminished levels of palmitoylation, a post-translational modification crucial for trafficking of proteins to the cell membrane. Enzymatically raised palmitoylation levels restored the surface expression of the p.G257R variant γ2 subunit. INTERPRETATION: The statistical association and the functional evidence suggest that mutations of the GABRG2 gene may increase the risk of RE/ARE. Restoring the impaired membrane trafficking of some GABRG2 mutations by enhancing palmitoylation might be an interesting therapeutic approach to reverse the pathogenic effect of such mutants.


Asunto(s)
Epilepsia Rolándica/genética , Lipoilación/genética , Mutación/genética , Receptores de GABA-A/genética , Exoma , Femenino , Células HEK293 , Humanos , Síndrome de Landau-Kleffner/genética , Masculino , Linaje , Síndrome , Población Blanca/genética
15.
Brain ; 138(Pt 5): 1198-207, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25783594

RESUMEN

Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2.17 × 10(-5)). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3.50 × 10(-4)). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.


Asunto(s)
Proteínas de Unión al ADN/genética , Epilepsia Refleja/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Animales , Electroencefalografía , Técnicas de Silenciamiento del Gen/métodos , Humanos , Estimulación Luminosa/métodos , Factores de Riesgo , Pez Cebra
16.
Ann Neurol ; 75(5): 788-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24591017

RESUMEN

Recent studies reported DEPDC5 loss-of-function mutations in different focal epilepsy syndromes. Here we identified 1 predicted truncation and 2 missense mutations in 3 children with rolandic epilepsy (3 of 207). In addition, we identified 3 families with unclassified focal childhood epilepsies carrying predicted truncating DEPDC5 mutations (3 of 82). The detected variants were all novel, inherited, and present in all tested affected (n=11) and in 7 unaffected family members, indicating low penetrance. Our findings extend the phenotypic spectrum associated with mutations in DEPDC5 and suggest that rolandic epilepsy, albeit rarely, and other nonlesional childhood epilepsies are among the associated syndromes.


Asunto(s)
Epilepsias Parciales/genética , Mutación/genética , Serina-Treonina Quinasas TOR/genética , Niño , Preescolar , Epilepsias Parciales/diagnóstico , Epilepsia Rolándica/diagnóstico , Epilepsia Rolándica/genética , Femenino , Variación Genética/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Linaje , Fenotipo
17.
Epilepsia ; 56(3): e26-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25690317

RESUMEN

Fever-associated syndromic epilepsies ranging from febrile seizures plus (FS+) to Dravet syndrome have a significant genetic component. However, apart from SCN1A mutations in >80% of patients with Dravet syndrome, the genetic underpinnings of these epilepsies remain largely unknown. Therefore, we performed a genome-wide screening for copy number variations (CNVs) in 36 patients with SCN1A-negative fever-associated syndromic epilepsies. Phenotypes included Dravet syndrome (n = 23; 64%), genetic epilepsy with febrile seizures plus (GEFS+) and febrile seizures plus (FS+) (n = 11; 31%) and unclassified fever-associated epilepsies (n = 2; 6%). Array comparative genomic hybridization (CGH) was performed using Agilent 4 × 180K arrays. We identified 13 rare CNVs in 8 (22%) of 36 individuals. These included known pathogenic CNVs in 4 (11%) of 36 patients: a 1q21.1 duplication in a proband with Dravet syndrome, a 14q23.3 deletion in a proband with FS+, and two deletions at 16p11.2 and 1q44 in two individuals with fever-associated epilepsy with concomitant autism and/or intellectual disability. In addition, a 3q13.11 duplication in a patient with FS+ and two de novo duplications at 7p14.2 and 18q12.2 in a patient with atypical Dravet syndrome were classified as likely pathogenic. Six CNVs were of unknown significance. The identified genomic aberrations overlap with known neurodevelopmental disorders, suggesting that fever-associated epilepsy syndromes may be a recurrent clinical presentation of known microdeletion syndromes.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Epilepsia/etiología , Epilepsia/genética , Fiebre/complicaciones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adolescente , Adulto , Niño , Preescolar , Aberraciones Cromosómicas , Deleción Cromosómica , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
18.
Epilepsia ; 56(12): e203-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26537434

RESUMEN

The first mutations identified in SLC2A1, encoding the glucose transporter type 1 (GLUT1) protein of the blood-brain barrier, were associated with severe epileptic encephalopathy. Recently, dominant SLC2A1 mutations were found in rare autosomal dominant families with various forms of epilepsy including early onset absence epilepsy (EOAE), myoclonic astatic epilepsy (MAE), and genetic generalized epilepsy (GGE). Our study aimed to investigate the possible role of SLC2A1 in various forms of epilepsy including MAE and absence epilepsy with early onset. We also aimed to estimate the frequency of GLUT1 deficiency syndrome in the Danish population. One hundred twenty patients with MAE, 50 patients with absence epilepsy, and 37 patients with unselected epilepsies, intellectual disability (ID), and/or various movement disorders were screened for mutations in SLC2A1. Mutations in SLC2A1 were detected in 5 (10%) of 50 patients with absence epilepsy, and in one (2.7%) of 37 patient with unselected epilepsies, ID, and/or various movement disorders. None of the 120 MAE patients harbored SLC2A1 mutations. We estimated the frequency of SLC2A1 mutations in the Danish population to be approximately 1:83,000. Our study confirmed the role of SLC2A1 mutations in absence epilepsy with early onset. However, our study failed to support the notion that SLC2A1 aberrations are a cause of MAE without associated features such as movement disorders.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/epidemiología , Epilepsias Mioclónicas/genética , Epilepsia Tipo Ausencia/genética , Transportador de Glucosa de Tipo 1/genética , Proteínas de Transporte de Monosacáridos/deficiencia , Errores Innatos del Metabolismo de los Carbohidratos/genética , Preescolar , Dinamarca/epidemiología , Epilepsia Generalizada/genética , Transportador de Glucosa de Tipo 1/deficiencia , Transportador de Glucosa de Tipo 1/fisiología , Humanos , Lactante , Proteínas de Transporte de Monosacáridos/genética , Mutación , Síndrome
19.
Hum Mol Genet ; 21(24): 5359-72, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22949513

RESUMEN

Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.


Asunto(s)
Epilepsia Generalizada/genética , Estudio de Asociación del Genoma Completo , Alelos , Epilepsia Tipo Ausencia/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/genética , Humanos , Epilepsia Mioclónica Juvenil/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Proteínas Serina-Treonina Quinasas/genética , Receptor Muscarínico M3/genética , Proteínas Represoras/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
20.
Epilepsia ; 54(5): 918-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23398550

RESUMEN

PURPOSE: Dravet syndrome (DS) or severe myoclonic epilepsy of infancy is an intractable epileptic encephalopathy of early childhood that is caused by a mutation in the SCN1A gene in most patients. The aim of this study was to identify a syndrome-specific epileptic network underlying interictal epileptiform discharges (IEDs) in patients with DS. METHODS: Ten patients with the diagnosis of DS associated with mutations in the SCN1A gene were investigated using simultaneous recording of electroencephalography and functional magnetic resonance imaging ((EEG-fMRI). Time series of IEDs were used as regressors for the statistical fMRI analysis. KEY FINDINGS: In nine patients with DS, individual blood oxygenation level-dependent (BOLD) signal changes were seen. In three patients the thalamus was involved. Furthermore, regions of the default mode network were activated in seven patients. However, a common activation pattern associated with IEDs could not be detected. SIGNIFICANCE: The study demonstrates that, despite a common genetic etiology in DS, different neuronal networks underlie the individual IEDs.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Electroencefalografía , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Imagen por Resonancia Magnética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adolescente , Adulto , Mapeo Encefálico , Niño , Preescolar , Epilepsias Mioclónicas/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Oxígeno/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA