Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stem Cells ; 38(9): 1107-1123, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442326

RESUMEN

Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage-specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm-like cells, lateral plate mesoderm-like cells, and neural crest-like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest-derived OPs-a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Cresta Neural/citología , Osteogénesis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Análisis de Componente Principal , Transcriptoma/genética
2.
iScience ; 27(8): 110537, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39193188

RESUMEN

Stem cell therapies for degenerative cartilage disease are limited by an incomplete understanding of hyaline cartilage formation and maintenance. Human bone marrow stromal cells/skeletal stem cells (hBMSCs/SSCs) produce stable hyaline cartilage when attached to hyaluronic acid-coated fibrin microbeads (HyA-FMBs), yet the mechanism remains unclear. In vitro, hBMSC/SSC/HyA-FMB organoids exhibited reduced BMP signaling early in chondrogenic differentiation, followed by restoration of BMP signaling in chondrogenic IGFBP5 + /MGP + cells. Subsequently, human-induced pluripotent stem cell (hiPSC)-derived sclerotome cells were established (BMP inhibition) and then treated with transforming growth factor ß (TGF-ß) -/+ BMP2 and growth differentiation factor 5 (GDF5) (BMP signaling activation). TGF-ß alone elicited a weak chondrogenic response, but TGF-ß/BMP2/GDF5 led to delamination of SOX9 + aggregates (chondrospheroids) with high expression of COL2A1, ACAN, and PRG4 and minimal expression of COL10A1 and ALP in vitro. While transplanted hBMSCs/SSCs/HyA-FMBs did not heal articular cartilage defects in immunocompromised rodents, chondrospheroid-derived cells/HyA-FMBs formed non-hypertrophic cartilage that persisted until at least 5 months in vivo.

3.
J Dev Biol ; 9(4)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34698187

RESUMEN

In this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance. As such, unraveling the mechanisms behind MS will require a comprehensive and systematic way of phenotyping patients to precisely identify the impact of the mutation variant on craniofacial development. To establish this framework, we quantitatively delineated the craniofacial phenotype of an individual with MS and compared this to his unaffected parents using three-dimensional cephalometric analysis of cone beam computed tomography scans and geometric morphometric analysis, in addition to an extensive clinical evaluation. Secondly, given the utility of human induced pluripotent stem cells (hiPSCs) as a patient-specific investigative tool, we also generated the first hiPSCs derived from a family trio, the proband and his unaffected parents as controls, with detailed characterization of all cell lines. This report provides a starting point for evaluating the mechanistic underpinning of the craniofacial development in MS with the goal of linking specific clinical manifestations to molecular insights gained from hiPSC-based disease modeling.

4.
Stem Cell Res ; 46: 101823, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505898

RESUMEN

Muenke syndrome is the leading genetic cause of craniosynostosis and results in a variety of disabling clinical phenotypes. To model the disease and study the pathogenic mechanisms, a human induced pluripotent stem cell (hiPSC) line was generated from a patient diagnosed with Muenke syndrome. Successful reprogramming was validated by morphological features, karyotyping, loss of reprogramming factors, expression of pluripotency markers, mutation analysis and teratoma formation.


Asunto(s)
Craneosinostosis , Células Madre Pluripotentes Inducidas , Craneosinostosis/genética , Humanos , Mutación , Fenotipo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
5.
Invest Ophthalmol Vis Sci ; 57(7): 3039-46, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281269

RESUMEN

PURPOSE: The roles of gap junction protein connexin 50 (Cx50) encoded by Gja8, during lens development are not fully understood. Connexin 50 knockout (KO) lenses have decreased proliferation of epithelial cells and altered fiber cell denucleation. We further investigated the mechanism for cellular defects in Cx50 KO (Gja8-/-) lenses. METHODS: Fiber cell morphology and subcellular distribution of various lens membrane/cytoskeleton proteins from wild-type and Cx50 KO mice were visualized by immunofluorescent staining and confocal microscopy. RESULTS: We observed multiple morphological defects in the cortical fibers of Cx50 KO lenses, including abnormal fiber cell packing geometry, decreased F-actin enrichment at tricellular vertices, and disrupted ball-and-socket (BS) structures on the long sides of hexagonal fibers. Moreover, only small gap junction plaques consisting of Cx46 (α3 connexin) were detected in cortical fibers and the distributions of the BS-associated beta-dystroglycan and ZO-1 proteins were altered. CONCLUSIONS: Connexin 50 gap junctions are important for BS structure maturation and cortical fiber cell organization. Connexin 50-based gap junction plaques likely form structural domains with an array of membrane/cytoskeletal proteins to stabilize BS. Loss of Cx50-mediated coupling, BS disruption, and altered F-actin in Cx50 KO fibers, thereby contribute to the small lens and mild cataract phenotypes.


Asunto(s)
Extensiones de la Superficie Celular/ultraestructura , Conexinas/fisiología , Proteínas de Filamentos Intermediarios/ultraestructura , Cristalino/metabolismo , Cristalino/ultraestructura , Actinas/metabolismo , Animales , Conexinas/metabolismo , Citoesqueleto/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA