Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 53(16): 9502-9511, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31317734

RESUMEN

Legacy iron (Fe) and steel wastes have been identified as a significant source of silicate minerals, which can undergo carbonation reactions and thus sequester carbon dioxide (CO2). In reactor experiments, i.e., at elevated temperatures, pressures, or CO2 concentrations, these wastes have high silicate to carbonate conversion rates. However, what is less understood is whether a more "passive" approach to carbonation can work, i.e., whether a traditional slag emplacement method (heaped and then buried) promotes or hinders CO2 sequestration. In this paper, the results of characterization of material retrieved from a first of its kind drilling program on a historical blast furnace slag heap at Consett, U.K., are reported. The mineralogy of the slag material was near uniform, consisting mainly of melilite group minerals with only minor amounts of carbonate minerals detected. Further analysis established that total carbon levels were on average only 0.4% while average calcium (Ca) levels exceeded 30%. It was calculated that only ∼3% of the CO2 sequestration potential of the >30 Mt slag heap has been utilized. It is suggested that limited water and gas interaction and the mineralogy and particle size of the slag are the main factors that have hindered carbonation reactions in the slag heap.


Asunto(s)
Hierro , Acero , Dióxido de Carbono , Carbonatos , Residuos Industriales
2.
Data Brief ; 52: 109947, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226036

RESUMEN

This article provides novel data on the microstructure and crystallographic texture of modern giant clam shells (Tridacna squamosa and Hippopus hippopus) from the Coral Triangle region of northeast Borneo. Giant clams have two aragonitic shell layers-the inner and outer shell layer. This dataset focuses on the inner shell layer as this is well preserved and not affected by diagenetic alteration. To prepare samples for analysis, shells were cut longitudinally at the axis of maximum growth and mounted onto thin sections. Data collection involved scanning electron microscopy (SEM) to determine microstructure and SEM based electron backscatter diffraction (EBSD) for quantitative measurement of crystallographic orientation and texture. Post-acquisition reanalysis of saved EBSD patterns to optimize data quality included changing the number of reflectors and band detection mode. We provide EBSD data as band contrast images and colour-coded orientation maps (inverse pole figure maps). Crystallographic co-orientation strength obtained with multiple of uniform density (MUD) values are derived from density distributed pole figures of indexed EBSD points. Raw EBSD data files are also given to ensure repeatability of the steps provided in this article and to allow extraction of further crystallographic properties for future researchers. Overall, this dataset provides 1. a better understanding of shell growth and biomineralization in giant clams and 2. important steps for optimizing data collection with EBSD analyses in biogenic carbonates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA