Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 92: 117426, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37552917

RESUMEN

INTRODUCTION: Systemic amyloidosis is a rare disease caused by the deposition of amyloid fibrils in various organs. Amyloid-targeted radiopharmaceuticals have been developed and applied to diagnose systemic amyloidosis peripherally; however, high-contrast imaging has not been achieved because of the high background signals in normal organs. To overcome this problem, we designed an amyloid-targeted radioiodinated probe 1 with a metabolizable linkage (ester bond) to release of radiolabeled metabolites (m-iodohippuric acid) in normal organs that could be rapidly excreted in the urine. METHODS: Compound 1 was synthesized by conjugating 2-(4-(methylamino)phenyl)benzo[d]thiazol-6-ol, an amyloid-targeting compound, with m-iodohippuric acid. [125I]1 was synthesized via iododestannylation using a tributyltin precursor. Mouse models of amyloid A (AA) amyloidosis, a type of systemic amyloidosis, were prepared by administering amyloid-enhancing factor to mice and used for in vitro autoradiography using organ sections and in vivo evaluation. RESULTS: [125I]1 was obtained with a radiochemical yield of 59% and radiochemical purity of over 95%. An in vitro autoradiographic study demonstrated that [125I]1 specifically binds to amyloid in the splenic tissue. Upon administration to normal mice, [125I]1 was distributed to organs throughout the body, followed by the rapid excretion of radioactivity in the urine as m-[125I]iodohippuric acid. Furthermore, ex vivo autoradiography showed that [125I]1 bound to the amyloid formed around the follicles in the spleens of AA amyloidosis model mice. CONCLUSION: These results suggest that the interposition of a metabolizable linkage between an amyloid-targeting moiety and a radiolabeled hippuric acid would be useful in the design of radiopharmaceuticals for high-contrast imaging of systemic amyloidosis.


Asunto(s)
Amiloidosis , Radiofármacos , Ratones , Animales , Radiofármacos/química , Ácido Yodohipúrico , Amiloidosis/diagnóstico por imagen , Amiloide/metabolismo
2.
Mol Pharm ; 19(5): 1400-1409, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404619

RESUMEN

Liposomes are highly biocompatible drug carriers in drug delivery systems (DDSs). Preferential accumulation of liposomes and acceleration of drug release at target tumor sites are essential for effective cancer therapy using liposomal formulations; however, conventional liposomes are unsuitable for on-demand drug release. We have previously reported that drug release can be accelerated via a bio-orthogonal inverse electron demand Diels-Alder (IEDDA) reaction between amphiphilic tetrazine (Tz)-containing liposomes and norbornene (NB) derivatives in vitro. In this study, we prepared HSTz-liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC) and Tz compound (2-hexadecyl-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)pyridin-3-yl)octadecanamide) with particle sizes of 60-80 nm and ζ-potentials of -5 to 0 mV. Similar to our previous report, the addition of 5-norbornene-2-carboxylic acid (NBCOOH) to HSTz-liposomes accelerated drug release from the liposomes in vitro. In the biodistribution study using colon26 tumor-bearing mice, the radiolabeled HSTz-liposomes were accumulated and retained in the tumor at 6-48 h post-injection, whereas the radioactivity in the blood almost disappeared at 48 h. Therefore, the timing of the injection of NBCOOH was selected to be 48 h after the injection of the HSTz-liposome to avoid the IEDDA reaction in the bloodstream. We investigated the in vivo drug release by evaluating the intratumoral localization of doxorubicin (DOX) encapsulated in HSTz-liposomes labeled with fluorescent lipids. In the tumors treated with HSTz-liposomes and NBCOOH, DOX was more widely dispersed in the tumor compared with fluorescent lipid, suggesting that the release of encapsulated drugs (DOX) from HSTz-liposomes was enhanced in the tumor tissue via the bio-orthogonal IEDDA reaction. Furthermore, the combination of DOX-encapsulated HSTz-liposomes with NBCOOH significantly suppressed tumor growth compared to conventional DOX-encapsulated liposomes. In conclusion, the bio-orthogonal IEDDA reactions in the liposomal membrane enabled the acceleration of drug release from HSTz-liposomes in vivo, suggesting a promising strategy for effective cancer therapy.


Asunto(s)
Liposomas , Neoplasias , Animales , Antibióticos Antineoplásicos , Línea Celular Tumoral , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Ratones , Neoplasias/tratamiento farmacológico , Norbornanos , Polietilenglicoles , Distribución Tisular
3.
Org Biomol Chem ; 20(40): 7956-7962, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36190120

RESUMEN

Nitroxides are known to undergo oxidation, reduction, and radical scavenging reactions due to their stable radicals. Nitroxides have a wide range of applications due to their reactivities, including radical detecting probes and catalysts. Because nitroxides are easily reduced by ascorbate, a reducing agent, in biological applications, it is critical to control their reactivity to use them as a probe to trace the target reaction. On the other hand, the phenyl group, which is present in many functional organic molecules, is useful for controlling the electronic and steric effects. However, there has been few systematic studies on the substituent effects of TEMPO-type nitroxides with phenyl rings in the vicinity of a radical (α-position). In this study, we synthesized three nitroxides with a phenyl group at the α-position of a TEMPO-type nitroxide and tested their redox properties. The results showed that the reduction reactivity and redox potential differed depending on the position of the phenyl group, implying that the phenyl group one carbon away from the α-carbon of the N-O moiety increases the degree of steric hindrance. This finding is expected to be the basis for the development of functional nitroxides.


Asunto(s)
Carbono , Sustancias Reductoras , Óxidos N-Cíclicos/farmacología , Óxidos de Nitrógeno , Oxidación-Reducción , Espectroscopía de Resonancia por Spin del Electrón
4.
Bioorg Med Chem ; 56: 116591, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033883

RESUMEN

INTRODUCTION: Systemic amyloidosis is a group of diseases characterized by the deposition of amyloid protein in multiple organs throughout the body and causing their dysfunction. As amyloid deposition is observed at an early phase and is highly specific to systemic amyloidosis, noninvasive detection of amyloid is considered useful for the early diagnosis of systemic amyloidosis. In this study, we designed and synthesized a novel radiolabeled amyloid imaging probe, sodium (E)-4-amino-3-((4-(6-iodobenzothiazol-2-yl)phenyl)diazenyl)naphthalene-1-sulfonate (1), which combines two amyloid-binding compounds, thioflavin-T and Congo-red, and evaluated its effectiveness in diagnosing amyloidosis. METHODS: A tributyltin precursor was synthesized through a 5-step reaction from 2-amino-6-bromobenzothiazole, and [125I]1 was synthesized by an iododestannylation reaction with a tributyltin precursor. Mouse models of amyloid A (AA) amyloidosis, a type of systemic amyloidosis, were prepared by intraperitoneal injection of amyloid-enhancing factor into mice. An in vitro autoradiographic study was performed using spleen sections from normal mice and AA amyloidosis mice. Furthermore, [125I]1 was intravenously injected into mice, and its distribution was evaluated. Finally, an ex vivo autoradiographic study was performed using AA amyloidosis mice. RESULTS: [125I]1 was obtained with a radiochemical yield of 66% and a radiochemical purity of over 95%. In vitro autoradiography revealed specific binding of [125I]1 to thioflavin-S-stained regions in the spleen. Normal mice showed relatively rapid clearance of [125I]1 from the organs, whereas radioactivity was retained in the spleen, where amyloid deposition was observed in model mice. Furthermore, ex vivo autoradiography showed a heterogeneous distribution of [125I]1, which was co-localized with thioflavin-S-stained regions in the spleen of model mice. CONCLUSION: These results indicate the potential of radioiodinated 1 as a nuclear imaging probe for diagnosing AA amyloidosis.


Asunto(s)
Amiloidosis/diagnóstico , Benzotiazoles/química , Rojo Congo/química , Desarrollo de Medicamentos , Radiofármacos/química , Animales , Autorradiografía , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Radioisótopos de Yodo , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Radiofármacos/síntesis química , Relación Estructura-Actividad
5.
Molecules ; 27(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209077

RESUMEN

Zinc is an essential trace element involved in many biological activities; however, its functions are not fully understood. To elucidate the role of endogenous labile Zn2+, we developed a novel ratiometric fluorescence probe, 5-(4-methoxyphenyl)-4-(methylsulfanyl)-[2,2'-bipyridin]-6-amine (6 (rBpyZ)) based on the 6-amino-2,2'-bipyridine scaffold, which acts as both the chelating agent for Zn2+ and the fluorescent moiety. The methoxy group acted as an electron donor, enabling the intramolecular charge transfer state of 6 (rBpyZ), and a ratiometric fluorescence response consisting of a decrease at the emission wavelength of 438 nm and a corresponding increase at the emission wavelength of 465 nm was observed. The ratiometric probe 6 (rBpyZ) exhibited a nanomolar-level dissociation constant (Kd = 0.77 nM), a large Stokes shift (139 nm), and an excellent detection limit (0.10 nM) under physiological conditions. Moreover, fluorescence imaging using A549 human lung adenocarcinoma cells revealed that 6 (rBpyZ) had good cell membrane permeability and could clearly visualize endogenous labile Zn2+. These results suggest that the ratiometric fluorescence probe 6 (rBpyZ) has considerable potential as a valuable tool for understanding the role of Zn2+ in living systems.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Molecular/métodos , Piridinas/química , Zinc/química , Línea Celular , Técnicas de Química Sintética , Colorantes Fluorescentes/síntesis química , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Fluorescencia , Zinc/metabolismo
6.
J Fluoresc ; 31(4): 1161-1167, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33983566

RESUMEN

Fluorescence probes that selectively image cadmium are useful for detecting and tracking the amount of Cd2+ in cells and tissues. In this study, we designed and synthesized a novel Cd2+ fluorescence probe based on the pyridine-pyrimidine structure, 4-(methylsulfanyl)-6-(pyridin-2-yl)pyrimidin-2-amine (3), as a low-molecular-weight fluorescence probe for Cd2+. Compound 3 could successfully discriminate between Cd2+ and Zn2+ and exhibited a highly selective turn-on response toward Cd2+ over biologically related metal ions. The dissociation constant (Kd) and the limit of detection (LOD) of 5.4 × 10- 6 mol L- 1 and 4.4 × 10- 7 mol L- 1, respectively, were calculated using fluorescence titration experiments. Studies with closely related analogs showed that the bis-heterocyclic moiety of 3 acted as both a coordination site for Cd2+ and a fluorophore. Further, the methylsulfanyl group of compound 3 is essential for achieving selective and sensitive Cd2+ detection. Fluorescence microscopy studies using living cells revealed that the cell membrane permeability of compound 3 is sufficient to detect intracellular Cd2+. These results indicate that novel bis-heterocyclic molecule 3 has considerable potential as a fluorescence probe for Cd2+ in biological applications.


Asunto(s)
Colorantes Fluorescentes , Cadmio , Microscopía Fluorescente
7.
Biol Pharm Bull ; 44(3): 410-415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642549

RESUMEN

Melanoma is a highly malignant skin cancer that frequently metastasizes to the lung, bone, and brain at an early phase. Therefore, noninvasive detection of metastasized melanoma could be beneficial to determine suitable therapeutic strategies. We previously reported a biocompatible ternary anionic complex composed of plasmid DNA (pDNA), polyethyleneimine (PEI), and γ-polyglutamic acid (γ-PGA) based on an electrostatic interaction, which was highly taken up by melanoma cells (B16-F10), even if it was negatively charged. Here, we developed a radiolabeled γ-PGA complex by using indium-111 (111In)-labeled polyamidoamine dendrimer (4th generation; G4) instead of pDNA and iodine-125 (125I)-labeled PEI instead of native PEI, and evaluated its effectiveness as a melanoma-targeted imaging probe. This ternary complex was synthesized at a theoretical charge ratio; carboxyl groups of 111In-diethylenetriaminepentaacetic acid (DTPA)-G4 : amino groups of 125I-PEI : carboxyl groups of γ-PGA was 1 : 8 : 16, and the size and zeta potential were approximately 29 nm and -33 mV, respectively. This complex was taken up by B16-F10 cells with time. Furthermore, a biodistribution study, using normal mice, demonstrated its accumulation in the liver, spleen, and lung, where macrophage cells are abundant. Almost the same level of radioactivity derived from both 111In and 125I was observed in these organs at an early phase after probe injection. Compared with the normal mice, significantly higher lung-to-blood ratios of radioactivity were observed in the B16-F10-lung metastatic cancer model. In conclusion, the radiolabeled γ-PGA complex would hold potentialities for nuclear medical imaging of lung metastatic melanoma.


Asunto(s)
Dendrímeros/administración & dosificación , Neoplasias Pulmonares/diagnóstico , Nanopartículas/administración & dosificación , Ácido Pentético/administración & dosificación , Polietileneimina/administración & dosificación , Ácido Poliglutámico/análogos & derivados , Animales , Línea Celular Tumoral , Dendrímeros/farmacocinética , Radioisótopos de Indio , Radioisótopos de Yodo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Melanoma/metabolismo , Melanoma/patología , Ratones Endogámicos BALB C , Ácido Pentético/farmacocinética , Polietileneimina/farmacocinética , Ácido Poliglutámico/administración & dosificación , Ácido Poliglutámico/farmacocinética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Distribución Tisular
8.
Langmuir ; 36(36): 10750-10755, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32830502

RESUMEN

Bio-orthogonal inverse electron demand Diels-Alder (IEDDA) reactions between liposomes containing a tetrazine-based (Tz) compound and 2-norbornene (2-NB) could be a novel trigger for accelerating drug release from the liposomes via temporary membrane destabilization, as shown in our previous report. Herein, we evaluated the in vitro drug release using NB derivatives with carboxyl groups [5-norbornene-2-carboxylic acid (NBCOOH) and 5-norbornene-2,3-dicarboxylic acid (NB(COOH)2)] to investigate the effects of substituents at the NB backbone on the drug release rate. First, POTz-liposome composed of a Tz compound (2-hexadecyl-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)pyridin-3-yl)octadecanamide) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) were prepared. The mass spectrometry analysis revealed the binding of NB derivatives to the Tz compound via the IEDDA reaction after the POTz-liposome reacted with the NB derivatives. Indium-111-labeled diethylenetriaminepentaacetic acid (111In-DTPA) was encapsulated inside the liposomes, and the drug release rate was quantified by measuring radioactivity. At 24 h after incubation with 2-NB, NBCOOH, and NB(COOH)2, the release rates of 111In-DTPA from POTz-liposome were 21.0, 80.8, and 23.3%, respectively, which were significantly higher than those of POTz-liposome that was not treated with NB derivatives (4.2%), indicating the involvement of the IEDDA reaction for prompting drug release. Additionally, a thermodynamic evaluation using Langmuir monolayers was conducted to explore the mechanism of the accelerated drug release. An increase in membrane fluidity and a reduction in intermolecular repulsion between POPC and the Tz compound were observed after the reaction with NB derivatives, especially for NBCOOH. Thus, the IEDDA reaction in the liposomal membrane could be a potent trigger for accelerating the release of encapsulated drugs by regulating membrane fluidity and intermolecular repulsion in the liposomal membrane.


Asunto(s)
Electrones , Liposomas , Reacción de Cicloadición , Fluidez de la Membrana , Membranas
9.
Bioorg Med Chem ; 27(16): 3613-3618, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31300319

RESUMEN

Tetrazine irreversibly reacts with dienophiles, and its derivatives find wide applications in the fields of biochemistry and biophysics. We have synthesized an amphiphilic tetrazine derivative (2-hexadecyl-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazine-3-yl)pyridin-3-yl)octadecanamide; 1), which has a hydrophilic tetrazine structure and hydrophobic alkyl chains. Liposomes composed of compound 1 and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) (PTz-liposome) were prepared. In search of a new drug delivery system (DDS), we investigated the viability of inverse electron-demand Diels-Alder, a reaction between tetrazine and 2-norbornene, on the surface of the liposomes to change membrane fluidity and promote spatial and temporal controlled release of the encapsulated drugs. Compound 1 was synthesized with a yield of 71%. MS analysis after incubation of 2-norbornene with PTz-liposome revealed the binding of 2-norbornene to tetrazine. Indium-111-labeled diethylenetriaminepentaacetic acid (111In-DTPA) was encapsulated inside PTz-liposome to evaluate the leakage of free 111In-DTPA from the liposomes quantitatively. After 24 h of adding 2-norbornene, the release percentage for PTz-liposome was significantly higher than that for the control liposome (without tetrazine structure). Furthermore, the membrane fluidity of the PTz-liposome was increased by adding 2-norbornene. These results suggested that the combination of dienophile and liposome containing a newly synthesized tetrazine derivative can be used as a controlled release DDS carrier.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Compuestos Heterocíclicos con 1 Anillo/síntesis química
10.
Biol Pharm Bull ; 42(8): 1376-1383, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31366872

RESUMEN

High-density lipoprotein (HDL) particles that are formed in vivo adopt a disk-shaped structure, in which the periphery of the discoidal phospholipid bilayer is surrounded by apolipoprotein. Such discoidal nanoparticles can be reconstituted with certain apolipoproteins and phospholipids and are commonly called lipid nanodisks. Apolipoprotein E (apoE), one of the HDL constituent proteins, serves as a ligand for the low-density lipoprotein (LDL) receptor. Thus, it is considered that biocompatible delivery vehicles targeting LDL receptors could be prepared by incorporating apoE as the protein component of lipid nanodisks. To enhance targeting efficiency, we designed lipid nanodisks with a large number of ligands using a peptide with the LDL receptor-binding region of apoE combined with a high lipid affinity sequence (LpA peptide). In our study, the LpA peptide spontaneously formed discoidal complexes (LpA nanodisks) of approximately 10 nm in size, equivalent to native HDL. LpA peptides on nanodisks adopted highly α-helical structures, a competent conformation capable of interacting with LDL receptors. As anticipated, the uptake of LpA nanodisks into LDL receptor-expressing cells (HepG2) was higher than that of apoE nanodisks, suggesting an enhanced targeting efficiency via the enrichment of LDL receptor-binding regions on the particle. Biodistribution studies using 111In-labeled LpA nanodisks showed little splenic accumulation and prolonged retention in blood circulation, reflecting the biocompatibility of LpA nanodisks. High accumulation of 111In-labeled LpA nanodisks was observed in the liver as well as in implanted tumors, which abundantly express LDL receptors. Thus, LpA nanodisks are potential biocompatible delivery vehicles targeting LDL receptors.


Asunto(s)
Apolipoproteínas E , Dimiristoilfosfatidilcolina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Nanoestructuras/administración & dosificación , Péptidos/administración & dosificación , Receptores de LDL/metabolismo , Animales , Dimiristoilfosfatidilcolina/farmacocinética , Portadores de Fármacos/farmacocinética , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Péptidos/farmacocinética , Distribución Tisular
11.
Sensors (Basel) ; 19(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052519

RESUMEN

A small extent of endogenous labile zinc is involved in many vital physiological roles in living systems. However, its detailed functions have not been fully elucidated. In this study, we developed a novel biheteroaryl-based low molecular weight fluorescent sensor, 3-(phenylsulfonyl)-pyrazine-pyridone (5b), and applied it for the detection of endogenous labile zinc ions from lung cancer cells during apoptosis. The electron-withdrawing property of the sulfonyl group between the phenyl ring as an electron donor and the pyridone ring as a fluorophore inhibited the intramolecular charge transfer state, and the background fluorescence of the sensor was decreased in aqueous media. From the structure-fluorescence relationship analysis of the substituent effects with/without Zn2+, compound 5b acting as a sensor possessed favorable properties, including a longer emission wavelength, a large Stokes shift (over 100 nm), a large fluorescence enhancement in response to Zn2+ under physical conditions, and good cell membrane permeability in living cells. Fluorescence imaging studies of human lung adenocarcinoma cells (A549) undergoing apoptosis revealed that compound 5b could detect endogenous labile zinc ions. These experiments suggested that the low molecular weight compound 5b is a potential fluorescence sensor for Zn2+ toward understanding its functions in living systems.


Asunto(s)
Técnicas Biosensibles , Iones/aislamiento & purificación , Neoplasias Pulmonares/química , Zinc/aislamiento & purificación , Humanos , Iones/química , Neoplasias Pulmonares/diagnóstico , Imagen Óptica , Pirazinas/síntesis química , Pirazinas/química , Piridonas/síntesis química , Piridonas/química , Agua/química , Zinc/química
12.
Arch Biochem Biophys ; 639: 9-15, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288051

RESUMEN

Human serum amyloid A (SAA) is a precursor protein of AA amyloidosis. Although the full-length SAA is 104 amino acids long, the C-terminal-truncated SAA lacking mainly residues 77-104 is predominantly deposited in AA amyloidosis. Nevertheless, the amyloid fibril formation of such truncated forms of human SAA has never been investigated. In the present study, we examined the effect of C-terminal truncation on amyloid fibril formation of human SAA induced by heparan sulfate (HS). Circular dichroism (CD) measurements demonstrated that the C-terminal truncation induces a reduced α-helical structure of the SAA molecule. HS-induced increases in thioflavin T fluorescence for SAA (1-76) peptide and less significant increases for full-length SAA were observed. CD spectral changes of SAA (1-76) peptide but not full-length SAA were observed when incubated with HS, although the spectrum was not typical for a ß-structure. Fourier transform infrared experiments clearly revealed that SAA (1-76) peptide forms a ß-sheet structure. Transmission electron microscopy revealed that short fibrillar aggregates of SAA (1-76) peptides, which became longer with increasing peptide concentrations, were observed under conditions in which full-length SAA scarcely formed fibrillar aggregates. These results suggested that the C-terminal truncation of human SAA accelerates amyloid fibril formation.


Asunto(s)
Heparitina Sulfato/química , Agregado de Proteínas , Proteína Amiloide A Sérica/química , Dicroismo Circular , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
13.
Mol Pharm ; 15(9): 3997-4003, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30036483

RESUMEN

In order to develop a radiopharmaceutical for internal radiotherapy that had a high anticancer effect while exposing normal tissues to low radiation levels, we synthesized a radiolabeled polyoxazoline (POZ), a thermoresponsive polymer, and established a novel drug delivery system for targeting tumors by accelerating the accumulation of the radiolabeled POZ via self-aggregation under hyperthermic (42-43 °C) conditions. By living-cationic polymerization using 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline, POZ derivatives (Et-IspPOZ) (10, 20, and 30 kDa) with lower critical solution temperatures (LCSTs) of 37-38 °C were synthesized; the POZ derivatives were soluble at the body temperature but self-aggregated upon heat treatment (42-43 °C). Next, the indium-111 (111In)-labeled Et-IspPOZ was prepared, and the effect of molecular weight and injected POZ dose on the accumulation of radioactivity in the tumors was investigated upon intravenous injection of probes under hyperthermic conditions in colon 26-bearing mice. The uptake of radioactivity in tumors was increased when the molecular weight of POZ was greater than 20 kDa, while it was independent of the injected POZ dose (4-40 nmol). The amount of radioactivity retained in the tumor did not change for up to 3 h after exposure to heat treatment was stopped. Furthermore, the tumor uptake of the Et-IspPOZ derivative with an LCST greater than 42 °C was significantly lower than that of Et-IspPOZ, which had an LCST of 37-38 °C, suggesting the involvement of the self-aggregation of POZ on tumor uptake. Finally, the intratumoral localization of fluorescence-labeled Et-IspPOZ was evaluated using in vivo confocal laser microscopy. Many bright fluorescence spots were observed in the heat-treated tumors nearby and within blood vessels. In conclusion, the high tumor uptake of radiolabeled Et-IspPOZ was elucidated under hyperthermic conditions; thereby, the possibility of developing a novel internal radiotherapy using radiolabeled POZ derivatives was demonstrated.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Polimerizacion , Temperatura
14.
Bioorg Med Chem Lett ; 28(2): 193-195, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29191557

RESUMEN

Matrix metalloproteinase-12 (MMP-12, macrophage elastase) is a member of the MMP family that is responsible for the degradation of extracellular matrix, and is associated with the inflammatory process of chronic obstructive pulmonary disease (COPD). COPD, characterized by progressive and irreversible airflow obstruction, is recently a major cause of mortality and morbidity worldwide. Herein, to develop radioiodinated probes for the early diagnosis of COPD, we designed and synthesized novel MMP-12-targeted dibenzofuran compounds (1-3) with a variety of linker structures (carbamate, amide, and sulfonamide). In competitive enzyme activity assays, it was revealed that the linker structures significantly affected the inhibitory activity against and selectivity for MMP-12. Compound 1, with carbamate linker, demonstrated potent MMP-12 inhibitory activity (IC50 = 8.5 nM) compared to compound 2, with amide linker, and compound 3, with sulfonamide linker. Using bromo-substituted carbamate 13 as a radioiodination precursor, [125I]1 was successfully prepared to high radiochemical purity (over 98%) and good specific radioactivity (4.1 GBq/µmol). These results suggest that radioiodinated compound 1 is potent as a novel MMP-12-targeted probe.


Asunto(s)
Benzofuranos/farmacología , Metaloproteinasa 12 de la Matriz/metabolismo , Benzofuranos/síntesis química , Benzofuranos/química , Relación Dosis-Respuesta a Droga , Humanos , Radioisótopos de Yodo , Estructura Molecular , Relación Estructura-Actividad
15.
J Labelled Comp Radiopharm ; 61(11): 857-863, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29972867

RESUMEN

Discoidal lipid nanoparticles mimicking native high-density lipoproteins (HDL) are promising delivery vehicles of drugs and/or imaging agents. However, little is known about the in vivo biodistribution of such discoidal lipid nanoparticles compared to liposomes, clinically available spherical lipid nanoparticles. Recently, it has been reported that synthetic polymers instead of apolipoproteins can be complexed with phospholipid to form discoidal nanoparticles. In the present study, with the aim of developing phospholipid-synthetic polymer complexes for future clinical applications, the biodistribution of such particles in normal mice was investigated. Lipid nanoparticles comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and styrene maleic acid copolymer (SMA), having sizes similar to native HDL, were prepared using the freeze-sonication method. POPC-SMA complexes remained stable at 37°C for at least 3 days in buffer. By devising ways to avoid detrimental effects accompanied by pH reduction and nonspecific binding of 111 In to SMA, POPC-SMA complexes were successfully labeled with 111 In without affecting particle integrity. The biodistribution of POPC-SMA complexes in normal mice was similar to that of discoidal lipid nanoparticles composed of POPC and apolipoprotein A-I, the major protein constituent of native HDL. Unlike liposomes, the accumulation of POPC-SMA complexes in the spleen was low, suggesting that these complexes are not recognized as foreign substances. To the best of our knowledge, this is the first in vivo study of HDL-mimicking phospholipid-synthetic polymer complexes.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/farmacocinética , Radioisótopos de Indio , Lipoproteínas HDL/metabolismo , Maleatos/química , Maleatos/farmacocinética , Fosfatidilcolinas/química , Poliestirenos/química , Poliestirenos/farmacocinética , Animales , Marcaje Isotópico , Masculino , Ratones , Nanopartículas/química , Distribución Tisular
16.
J Labelled Comp Radiopharm ; 61(14): 1095-1105, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30375667

RESUMEN

GluN2B-containing NMDA receptors (NMDARs) play fundamental roles in learning and memory, although they are also associated with various brain disorders. In this study, we synthesized and evaluated three 11 C-labeled N-benzyl amidine derivatives 2-[11 C]methoxybenzyl) cinnamamidine ([11 C]CBA), N-(2-[11 C]methoxybenzyl)-2-naphthamidine ([11 C]NBA), and N-(2-[11 C]methoxybenzyl)quinoline-3-carboxamidine ([11 C]QBA) as PET radioligands for these receptors. The 11 C-benzyl amidines were synthesized via conventional methylation of corresponding des-methyl precursors with [11 C]CH3 I. In vitro binding characteristics were examined in brain sagittal sections using various GluN2B modulators and off-target ligands. Further, in vivo brain distribution studies were performed in normal mice. The 11 C-labeled benzyl amidines showed high-specific binding to the GluN2B subunit at in vitro. In particular, the quinoline derivative [11 C]QBA had the best binding properties in terms of high-brain localization to GluN2B-rich regions and specificity to the GluN2B subunit. Conversely, these 11 C-radioligands showed the brain distributions were inconsistent with GluN2B expression in biodistribution experiments. The majority of the radiolabeled compounds were identified as metabolized forms of which amido derivatives seemed to be the major species. Although these 11 C-ligands had high-specific binding to the GluN2B subunit, significant improvement in metabolic stability is necessary for successful positron emission tomography (PET) imaging of the GluN2B subunit of NMDARs.


Asunto(s)
Amidinas/síntesis química , Amidinas/metabolismo , Radioisótopos de Carbono , Tomografía de Emisión de Positrones/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Amidinas/química , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Técnicas de Química Sintética , Marcaje Isotópico , Ligandos , Ratones , Radioquímica
18.
Biol Pharm Bull ; 40(3): 297-302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250270

RESUMEN

Sentinel lymph nodes (SLN) are the first lymph nodes (LN) where cancer cells metastasize from the primary tumor. We designed fluorophore-quencher-based activatable nanoparticles for SLN imaging. We selected TAMRA as a fluorophore and BHQ2 or QSY7 as a quencher. Ternary anionic complexes were constructed with generation 4th polyamidoamine dendrimer (G4) modified with TAMRA and p-SCN-Bn-DTPA (DTPA), polyethyleneimine (PEI) modified with BHQ2 or QSY7, and γ-polyglutamic acid (γ-PGA) by the electrostatic self-assembly system. TAMRA-G4-DTPA/PEI-BHQ2/γ-PGA and TAMRA-G4-DTPA/PEI-QSY7/γ-PGA complexes had a particle size of about 40 nm and a ζ-potential of -50 mV, and showed fluorescence resonance energy transfer (FRET) quenching. Fluorescence microscopy studies demonstrated that TAMRA-G4-DTPA/PEI-QSY7/γ-PGA complex produced intracellular fluorescent signals in the lysosome. During in vivo fluorescent imaging, TAMRA-G4-DTPA/PEI-QSY7/γ-PGA complex enabled the detection of mouse popliteal LN. The fluorophore-quencher conjugated γ-PGA complex based on FRET quenching would be useful for fluorescence-based optical imaging of SLN.


Asunto(s)
Fluorescencia , Nanopartículas , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Ácido Poliglutámico/análogos & derivados , Ganglio Linfático Centinela/diagnóstico por imagen , Animales , Dendrímeros , Colorantes Fluorescentes , Humanos , Metástasis Linfática/diagnóstico , Metástasis Linfática/diagnóstico por imagen , Lisosomas , Masculino , Ratones Endogámicos BALB C , Neoplasias/patología , Tamaño de la Partícula , Ácido Pentético , Poliaminas , Polietileneimina , Rodaminas
19.
Langmuir ; 32(26): 6591-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27280946

RESUMEN

Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.

20.
Bioorg Med Chem ; 24(16): 3727-33, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27325447

RESUMEN

Isomeric iodinated derivatives of nimesulide, with an iodine substituent on the phenoxy ring, were prepared with the aim of identifying potential candidate compounds for the development of imaging agents targeting cyclooxygenase-2 (COX-2) in the brain. Both the experimental logP7.4 and pKa values for these iodinated analogs were in the acceptable range for passive brain penetration. The para-iodo-substituted analog was a more potent and selective COX-2 inhibitor than nimesulide, with a potency that was comparable to the reference drug, celecoxib. Iodination at the ortho- or meta-position of the phenoxy ring was associated with a substantial loss of COX-2 inhibitory activity. Transport studies across Caco-2 cell monolayers in the presence and absence of a P-glycoprotein (P-gp) inhibitor, verapamil, indicated that the para-iodo-substituted analog was not a P-gp transport substrate; this feature is a prerequisite for potential in vivo brain imaging compounds. The para-iodo-substituted analog of nimesulide appears to be an attractive candidate for the development of radioiodine-labeled tracers for in vivo brain imaging of COX-2 levels.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Animales , Encéfalo/metabolismo , Células CACO-2 , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Humanos , Isomerismo , Ratones , Ratones Endogámicos BALB C , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Sulfonamidas/síntesis química , Sulfonamidas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA