Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653877

RESUMEN

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana , Cadenas Pesadas de Miosina , Receptores Notch , Transducción de Señal , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/genética , Fenotipo , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Proliferación Celular , Miosina Tipo II/metabolismo , Miosina Tipo II/genética
2.
J Cell Sci ; 135(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35950520

RESUMEN

Deltex (Dx) is a context-dependent regulator of Notch signaling that can act in a non-canonical fashion by facilitating the endocytosis of the Notch receptor. In an RNAi-based modifier screen of kinases and phosphatases, we identified Thickveins (Tkv), the receptor of Decapentaplegic (Dpp), as one of the interactors of Dx. Dpp, a Drosophila homolog of TGF-ß and bone morphogenetic proteins, acts as a morphogen to specify cell fate along the anterior-posterior axis of the wing. Tight regulation of Dpp signaling is thus indispensable for its proper functioning. Here, we present Dx as a novel modulator of Dpp signaling. We show evidence for the very first time that dx genetically interacts with dpp and its pathway components. Immunocytochemical analysis revealed that Dx colocalizes with Dpp and its receptor Tkv in Drosophila third-instar larval tissues. Furthermore, Dx was also seen to modulate the expression of dpp and its target genes, and we attribute this modulation to the involvement of Dx in the endocytosis and trafficking of Dpp. This study thus presents a whole new avenue of Dpp signaling regulation via the cytoplasmic protein Dx. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Alas de Animales
3.
Am J Med Genet A ; 191(10): 2524-2535, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317958

RESUMEN

X-linked retinoschisis (XLR) is a rare medical condition that involves in the splitting of neurosensory layers and the impairment of vision in the retina. In majority of the XLR cases, pathogenic variants in Retinoschisin 1 (RS1) gene have been implicated in males with an early age of onset during early childhood. In the present study, we have recruited two North Indian families having multiple affected male members, who were diagnosed with XLR. The entire protein-coding region of RS1 was screened by PCR-Sanger sequencing and two recurrent pathogenic variants (p.I81N and p.R102Q) were unraveled. The in vitro study of these variants demonstrated the aggregation of mutant RS1 within the endoplasmic reticulum. Furthermore, mutant forms of this protein showed significant intracellular retention, which was evident by the absence of retinoschisin protein fractions in the extracellular media. These inferences were also supported by extensive bioinformatics analysis of the mutants, which showed dramatic conformational changes in the local structure of retinoschisin. Thus, our study suggests that the identified pathogenic variants interfere with proper protein folding, leading to anomalous structural changes ultimately resulting in intracellular retention of retinoschisin within the retina.


Asunto(s)
Retinosquisis , Preescolar , Masculino , Humanos , Retinosquisis/diagnóstico , Retinosquisis/genética , Retinosquisis/metabolismo , Mutación Missense/genética , Retina/patología , Pliegue de Proteína , India , Proteínas del Ojo/genética
4.
Development ; 146(14)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31142544

RESUMEN

Notch signaling plays a pleiotropic role in a variety of cellular processes, including cell fate determination, differentiation, proliferation and apoptosis. The increasingly complex regulatory mechanisms of Notch signaling account for the many functions of Notch during development. Using a yeast two-hybrid screen, we identified the Drosophila DNA-binding protein Hat-trick (Htk) to be an interacting partner of Notch-intracellular domain (Notch-ICD); their physical interaction was further validated by co-immunoprecipitation experiments. htk genetically interacts with Notch pathway components in trans-heterozygous combinations. Loss of htk function in htk mutant somatic clones resulted in the downregulation of Notch targets, whereas its overexpression caused ectopic expression of Notch targets, without affecting the level of the Notch protein. In the present study, immunocytochemical analyses demonstrate that Htk and overexpressed Notch-ICD colocalize in the same nuclear compartment. Here, we also show that Htk cooperates with Notch-ICD and Suppressor of Hairless to form an activation complex and binds to the regulatory sequences of Notch downstream targets such as Enhancer of Split complex genes, to direct their expression. Together, our results suggest a novel mode of regulation of Notch signaling by the chromatin-modeling protein Htk.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Receptores Notch/genética , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
5.
Genes Cells ; 26(4): 254-263, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33555648

RESUMEN

Toll pathway is the center for the function of immune system in both Drosophila and mammals. Toll pathway in Drosophila gets activated upon binding of the ligand Spätzle to the receptor, Toll, triggering a series of proteolytic cascade culminating into the activation of the NF-κB factors Dorsal and/or Dif (Dorsal-related immunity factor). Inappropriate activation of the Toll pathway is often associated with systemic inflammation phenotype in the absence of infection, and thus, it is important to understand the regulation of Toll signaling. Deltex (Dx) is a context-dependent regulator of Notch signaling and has been linked with cell-mediated immunity in the mammalian system lately. However, the unambiguous role of Dx in humoral and cell-mediated immunity is yet to be explored. Our study unravels the novel role of Dx in Toll pathway activation. Gain of function of dx in Drosophila larvae results in increased melanotic mass formation and increased lamellocyte production. Our results also reveal the nuclear accumulation of transcription factors Dorsal and Dif and expression of Toll-associated antimicrobial peptides (AMP) in Dx over-expression background. Further, we also tried to elucidate the role of Dx in JNK-independent Toll activation. Here we present Dx as a novel candidate in the regulation of Toll pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Animales , Núcleo Celular/metabolismo , Larva/metabolismo , Transporte de Proteínas
6.
Cell Biol Int ; 45(3): 686-700, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33300258

RESUMEN

JNK signaling is a highly conserved signaling pathway that regulates a broad spectrum of cellular processes including cell proliferation, migration, and apoptosis. In Drosophila, JNK signaling is activated by binding of the tumor necrosis factor (TNF) Eiger to its receptor Wengen, and a conserved signaling cascade operates that culminates into activation of dual phosphatase Puckered thereby triggering apoptosis. The tumor necrosis factor receptor (TNFR) associated factor 6 (TRAF6) is an adaptor protein, which transduces the signal from TNFRs and Toll-like receptor/interleukin-1 receptor superfamily to induce a wide spectrum of cellular responses. TRAF6 also acts as the adaptor protein that mediates Eiger/JNK signaling in Drosophila. In a genetic interaction study, deltex (Dx) was identified as a novel interactor of TRAF6. Dx is well known to regulate Notch signaling in a context-dependent manner. Our data suggest that combinatorial action of Dx and TRAF6 enhances the Dx-induced wing nicking phenotype by inducing caspase-mediated cell death. Co-expression of Dx and TRAF6 also results in enhanced invasive behavior and perturbs the normal morphology of cells. The cooperative action of Dx and TRAF6 is attributed to JNK activation, which also leads to ectopic wingless (Wg) and decapentaplegic (Dpp) expression. Our results also reveal that the endocytic pathway component Rab7 may play a pivotal role in the regulation of Dx-TRAF6-mediated activation of JNK signaling. Here, we present the fact that Dx and TRAF6 together activate JNK signaling in an Eiger-independent mechanism.


Asunto(s)
Apoptosis , Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Caspasas/metabolismo , Proteínas de Drosophila/química , Activación Enzimática , Células Epiteliales/metabolismo , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas de la Membrana/química , Metástasis de la Neoplasia , Unión Proteica , Dominios Proteicos , Vesículas Transportadoras/metabolismo
7.
Adv Exp Med Biol ; 1227: 95-105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072501

RESUMEN

Notch signaling is an evolutionarily conserved pathway that plays a central role in a number of cellular events during metazoan development. Due to its involvement in numerous developmental events, Notch signaling requires tight spatial and temporal regulation. Deltex is a cytoplasmic protein that physically binds to the Notch and regulates its signaling activity in a context-dependent manner. However, the biology of Deltex in regulation of Notch signaling is not well explored. For a better understanding of Deltex activity in the regulatory circuit of Notch pathway, a co-IP-based screening was performed. Hrp48, an RNA-binding protein, was identified as an interacting partner of Deltex in that screening. Interaction of these two proteins seemed to regulate the Notch signaling outcome in the epithelial tissue. Additionally, it was found that coexpression of Deltex and Hrp48 can lead to cell death as well as JNK activation. Considering the fact of well conserved nature of Notch as well as both of these two proteins, namely, Hrp48 and Deltex, this interaction can be helpful to understand the regulation of Notch signaling both in development and disease condition.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales
8.
Adv Exp Med Biol ; 1227: 69-79, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072499

RESUMEN

Gene expression is regulated at multiple steps after generation of primary RNA transcripts, including mRNA processing, stability, and transport, along with co- and post-transcriptional regulation. These processes are controlled via the involvement of a multitude of RNA binding proteins (RBPs). Innumerable human diseases have been associated with altered expression of RNA binding proteins. In this chapter we have focused on Maheshvara (mahe) which encodes a putative DEAD box RNA helicase protein in Drosophila. We have recently reported that mahe plays an important role in regulation of Notch signaling. Fine tuning of Notch signaling is required at multiple steps and it's misregulation leads to a variety of human diseases. Additionally, mutation in DDX59, a human homolog of mahe results in broad neurological phenotypes associated with orofaciodigital syndrome. Drosophila mahe mutants show abnormal peripheral and central nervous system development that resemble neuropathology of patients having mutation in DDX59 gene. This chapter will help in advancing the knowledge as to how mahe regulates Notch signaling and nervous system development.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , ARN Helicasas/metabolismo , Receptores Notch/metabolismo , Animales , Humanos , Transducción de Señal
9.
Cell Biol Int ; 43(3): 350-357, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30597717

RESUMEN

The communication among the cells plays a seminal role in metazoan development by coordinating multiple cellular processes that, in turn, helps in the maintenance of biological homeostasis. Our previous study demonstrated that Dx and Hrp48 together downregulate Notch signaling and induce cell death in Drosophila. To understand the signaling events behind the Dx and Hrp48-induced cell death in a greater detail, we performed a set of genetic experiments followed by immunocytochemical analyses. Our data revealed that Dx along with Hrp48 induced JNK activation and consequently cell death in the eye tissue. Additionally, using genetic and molecular approaches, we identified the domain of Dx protein responsible for its synergistic activity with Hrp48. Altogether, our analyses suggest that coexpression of Dx and Hrp48 activates JNK pathway to induce cell death in eye disc of Drosophila melanogaster.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas de Drosophila/química , Activación Enzimática , Ojo/metabolismo , Proteínas de la Membrana/química , Unión Proteica , Dominios Proteicos , Receptores Notch/metabolismo
10.
Genesis ; 56(10): e23251, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30246928

RESUMEN

Owing to a multitude of functions, there is barely a tissue or a cellular process that is not being regulated by Notch signaling. To allow the Notch signal to be deployed in numerous contexts, many different mechanisms have evolved to regulate the level, duration and spatial distribution of Notch activity. To identify novel effectors of Notch signaling in Drosophila melanogaster, we analyzed the whole transcriptome of the wing and eye imaginal discs in which an activated form of Notch was overexpressed. Selected candidate genes from the transcriptome analysis were subjected to genetic interaction experiments with Notch pathway components. Among the candidate genes, T-box encoding gene, Dorsocross (Doc) showed strong genetic interaction with Notch ligand, Delta. Genetic interaction between them resulted in reduction of eye size, loss of cone cells, and cell death, which represent prominent Notch loss of function phenotypes. Immunocytochemical analysis in Df(3L)DocA/Dl 5f trans-heterozygous eye discs showed accumulation of Notch at the membrane. This accumulation led to decreased Notch signaling activity as we found downregulation of Atonal, a Notch target and reduction in the rate of Notch-mediated cell proliferation. Doc mutant clones generated by FLP-FRT system showed depletion in the expression of Delta and subsequent reduction in the Notch signaling activity. Similarly, Doc overexpression in the eye discs led to modification of Delta expression, loss of Atonal expression and absence of eye structure in pharate adults. Taken together, our results suggest that Doc regulates the expression of Delta and influence the outcome of Notch signaling in the eye discs.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ojo/embriología , Receptores Notch/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila/embriología , Drosophila/genética , Ojo/metabolismo , Femenino , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Masculino , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Alas de Animales/embriología , Alas de Animales/metabolismo
11.
Hum Mutat ; 39(2): 187-192, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29127725

RESUMEN

We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD-box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient-derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies-associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss-of-function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD-box RNA helicase in neurological function.


Asunto(s)
ARN Helicasas DEAD-box/genética , Mutación/genética , ARN Helicasas/genética , Adulto , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Drosophila/genética , Femenino , Mutación del Sistema de Lectura/genética , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Adulto Joven
12.
Genesis ; 55(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28722203

RESUMEN

Identification of Spoon as a suppressor of SCA8 associated neurodegeneration provides us a hint about its role in neuronal development and maintenance. However, a detailed molecular characterization of spoon has not yet been reported. Here, we describe spatial expression pattern of Spoon during Drosophila development. Quantitative real time-PCR and fluorescent RNA-RNA in situ hybridization indicate that Spoon is expressed at relatively high levels in larval brain and photoreceptors of eye-antennal discs. Immunostaining reveals that Spoon is subcellularly localized in the cytoplasm and is also membrane bound. Strong expression is also seen in adult ovary and testes. Spoon on immunostaining exhibits unique pattern of expression in larval brain. We observed that Spoon in the neuroblasts colocalizes with Prospero, a transcription factor regulating genes involved in neuroblast self-renewal or cell-cycle control. Co-immunoprecipitation suggests that Spoon and Prospero reside in the same protein complex. Using Drosophila model of SCA8 RNA neuropathy we have also shown that loss of Prospero hinders the suppression of SCA8 associated neurodegeneration by Spoonbill, suggesting Prospero and Spoon might genetically interact and function together. Our study presents Spoon as a novel interacting partner of Prospero and this might be critical in determining the polarized localization of cell fate determinants.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas Nucleares/metabolismo , Ovario/embriología , Ovario/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Testículo/embriología , Testículo/metabolismo , Factores de Transcripción/metabolismo
13.
Biochim Biophys Acta ; 1862(9): 1732-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27302466

RESUMEN

Spinocerebellar ataxia 8 (SCA8) pathogenesis is a resultant of gain-of-function machinery that primarily results at the RNA level. It has been reported that expanded non-coding CTG trinucleotide repeat in the ATXN8OS transcripts leads to SCA8 coupled neurodegeneration. Targeted depletion of pathogenic SCA8 transcripts is a viable therapeutic approach. In this report we have focused on the suppression of toxic RNA gain-of-function associated with SCA8. We report suppression of SCA8 associated neurodegeneration by KH RNA binding domain of Spoonbill. KH domain suppresses pathogenic SCA8 associated phenotype in adult flies. Ectopic expression of KH domain leads to massive reduction in the number and size of SCA8 RNA foci. We show that Spoonbill interacts with toxic SCA8 transcripts via its KH domain and promotes its depletion. Till date, no attempts have been made for therapeutic intervention of SCA8 pathogenesis. Further characterization of Spoonbill KH domain may aid us in designing peptide based therapeutics for SCA8 associated neurodegeneration.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Degeneraciones Espinocerebelosas/genética , Animales , Animales Modificados Genéticamente , Genes de Insecto , Humanos , Actividad Motora , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Fenotipo , Dominios Proteicos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Expansión de Repetición de Trinucleótido , Alas de Animales/anomalías
14.
Exp Eye Res ; 164: 139-150, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28844620

RESUMEN

Identification of causal genetic defects for human diseases took a significant leap when the first generation DNA sequencing technologies enabled biologists extract sequence-based genetic information from living beings. However, these sequencing methods had unavoidable constraints of throughput, scalability, rapidity, and resolution. In this direction, next-generation sequencing (NGS) since the time of its advent has revolutionized the process of gene discovery for both monogenic and multifactorial genetic diseases. Among several variations of NGS, whole exome sequencing (WES) has emerged as a smart strategy that enables identification of disease causing variants present within the coding region of the human genome. The current review focuses primarily on the application of WES in identification of causal variants for ocular diseases. WES has successfully revealed pathogenic variants in a variety of ocular diseases such as retinal degenerations, refractive errors, lens diseases, corneal dystrophies, and developmental ocular defects. It has demonstrated immense potential for molecular diagnosis of genetic ocular diseases. WES has been extensively used in Mendelian and complex cases, familial and sporadic cases, simplex and multiplex cases, and syndromic and non-syndromic cases of ocular diseases. Although many such ocular diseases have been investigated using WES, reports indicate that it has been employed overwhelmingly for heterogeneous retinal degenerations. WES, within a short period of time, has proved to be a cost-effective and promising approach for understanding the genetic basis of ocular diseases.


Asunto(s)
Exoma , Oftalmopatías/genética , Análisis de Secuencia de ADN/métodos , Análisis Mutacional de ADN/métodos , Oftalmopatías/diagnóstico , Proteínas del Ojo/genética , Variación Genética , Humanos
15.
Biochim Biophys Acta ; 1850(4): 802-12, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25597954

RESUMEN

BACKGROUND: Notch signaling plays a fundamental role both in metazoan cell fate determination and in the establishment of distinct developmental cell lineages. In a yeast two-hybrid screen, we identified Chip as a binding partner of Notch. Thus, we investigated the functional significance of Notch and Chip interactions. METHODS: Co-immunoprecipitation and GST pull-down experiments confirmed the physical interaction between Notch and Chip. Immunostaining revealed that Chip and Notch-intracellular domain (Notch-ICD) co-localized in cell nuclei. Loss-of-function and gain-of-function analyses of Chip were carried out using FLP/FRT and GAL4-UAS systems, respectively. Immunostaining and real-time PCR were performed to analyze the role of Chip on Notch-induced cell proliferation. RESULTS: Here, we report transcriptional cofactor Chip as a novel binding partner of Notch. Chip and Notch also showed strong genetic interactions, and Chip mutant clones in the dorsal compartment induced ectopic wing margins by ectopic expression of Notch and its targets, Wg and Cut. Our analyses revealed that stoichiometry of Notch and Chip is critical at the dorso-ventral (DV) boundary for wing margin formation. In addition, overexpression of Chip can rescue Notch-induced cell proliferation in larval imaginal discs. CONCLUSIONS: Our results indicate that Notch function in the DV boundary area is presumably dependent on Notch-Chip heterodimer formation. In addition, overexpression of Chip can rescue Notch-induced cell proliferation, presumably through titration of overexpressed Notch-ICD by excess Chip molecules. GENERAL SIGNIFICANCE: The present study reveals that Chip is a novel interacting partner of Notch and it plays a major role in Notch-induced DV margin formation and cell proliferation.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Proteínas Nucleares/fisiología , Receptores Notch/fisiología , Alas de Animales/embriología , Animales , Regulación del Desarrollo de la Expresión Génica
16.
Exp Cell Res ; 339(1): 51-60, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26431585

RESUMEN

Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Notch/metabolismo , Uniones Adherentes , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Longevidad , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Biochim Biophys Acta ; 1839(9): 800-12, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24863159

RESUMEN

Drosophila lin52 (dlin52) is a member of Myb transcription regulator complex and it shows a dynamic pattern of expression in all Drosophila tissues. Myb complex functions to activate or repress transcription in a site-specific manner; however, the detailed mechanism is yet to be clearly understood. Members of the Drosophila melanogaster Myb-MuvB/dREAM complex have been known to regulate expression of a wide range of genes including those involved in regulating apoptosis. E2F and its corepressor RBF also belong to this complex and together they regulate expression of genes involved in cell cycle progression, apoptosis, differentiation, and development. In the present study, we examined whether the depletion of dlin52 in developing photoreceptor neurons results in enhanced apoptosis and disorganisation of the ommatidia. Strikingly, we found that dLin52 is essential for transcriptional repression of the pro-apoptotic gene, hid; decrease in dlin52 levels led to dramatic induction of hid and apoptosis in eye-antennal discs. Reduction of Rpd3 (HDAC1), another member of the dREAM complex, also led to marginal upregulation of Hid. In addition, we also demonstrated that an optimum level of dLin52 is needed for dE2F1/2 activity on the hid promoter. dlin52 cooperates with dRBF and dE2F1/2 for recruitment of repressor complex on the hid promoter. Preliminary data indicate that Rpd3/HDAC1 also contributes to hid repression. Based on the findings, we conclude that dLin52 functions as a co-factor and modulates activity of members of dMyb/dREAM complex at hid promoter, thus regulating apoptosis by repressing this pro-apoptotic gene in the developing Drosophila eye.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Factores de Transcripción E2F/fisiología , Neuropéptidos/genética , Proteína de Retinoblastoma/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Apoptosis , Regiones Promotoras Genéticas
18.
Elife ; 122024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900140

RESUMEN

The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with ß-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas de Drosophila , Proteolisis , Ubiquitina-Proteína Ligasas , Proteína Wnt1 , Animales , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Vía de Señalización Wnt , beta Catenina/metabolismo , beta Catenina/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Transducción de Señal , Humanos , Drosophila/metabolismo , Drosophila/genética , Factores de Transcripción
19.
Int J Biol Macromol ; 263(Pt 1): 130154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354928

RESUMEN

Recent advancements in wound care have led to the development of interactive wound dressings utilizing nanotechnology, aimed at enhancing healing and combating bacterial infections while adhering to established protocols. Our novel wound dressings consist of N,N,N-trimethyl chitosan capped gold­silver nanoparticles (Au-Ag-TMC-NPs), with a mean size of 108.3 ± 8.4 nm and a zeta potential of +54.4 ± 1.8 mV. These optimized nanoparticles exhibit potent antibacterial and antifungal properties, with minimum inhibitory concentrations ranging from 0.390 µg ml-1 to 3.125 µg ml-1 and also exhibited promising zones of inhibition against multi-drug resistant strains of S. aureus, E. coli, P. aeruginosa, and C. albicans. Microbial transmission electron microscopy reveals substantial damage to cell walls and DNA condensation post-treatment. Furthermore, the nanoparticles demonstrate remarkable inhibition of microbial efflux pumps and are non-hemolytic in human blood. Incorporated into polyvinyl alcohol/chitosan nanofibers, they form Au-Ag-TMC-NPs-NFs with diameters of 100-350 nm, facilitating efficient antimicrobial wound dressing. In vivo studies on MDR microbial-infected wounds in mice showed 99.34 % wound healing rate within 12 days, corroborated by analyses of wound marker protein expression levels and advanced imaging techniques such as ultrasound/photoacoustic imaging, providing real-time visualization and blood flow assessment for a comprehensive understanding of the dynamic wound healing processes.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanofibras , Técnicas Fotoacústicas , Humanos , Ratones , Animales , Quitosano/farmacología , Staphylococcus aureus , Nanopartículas del Metal/uso terapéutico , Escherichia coli , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes
20.
FEBS J ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166442

RESUMEN

Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA