Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(19): 2819-2840, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605891

RESUMEN

More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.


Asunto(s)
Apoptosis , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo
2.
Chemistry ; 29(70): e202302529, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37846644

RESUMEN

We showed solvent- and concentration-triggered chiral tuning of the fibrous assemblies of two novel glycoconjugates Z-P(Gly)-Glu and Z-F(4-N)-Glu made by chemical attachment of Cbz-protected [short as Z)] non-proteinogenic amino acids L-phenylglycine [short as P(Gly)] and 4-Nitro-L-phenylalanine [short as F(4-N)] with D-glucosamine [short as Glu]. Both biomimetic gelators can form self-healing and shape-persistent gels with a very low critical gelator concentration in water as well as in various organic solvents, indicating they are ambidextrous supergelators. Detailed spectroscopic studies suggested ß-sheet secondary structure formation during anisotropic self-aggregation of the gelators which resulted in the formation of hierarchical left-handed helical fibers in acetone with an interlayer spacing of 2.4 nm. After the physical characterization of the gels, serum protein interaction with the gelators was assessed, indicating they may be ideal for biomedical applications. Further, both gelators are benign, non-immunogenic, non-allergenic, and non-toxic in nature, which was confirmed by performing the blood parameters and liver function tests on Wister rats. Streptomycin-loaded hydrogels showed efficacious antibacterial activity in vitro and in vivo as well. Finally, cell attachment and biocompatibility of the hydrogels were demonstrated which opens a newer avenue for promising biomedical and therapeutic applications.


Asunto(s)
Aminoácidos , Estreptomicina , Ratas , Animales , Aminoácidos/química , Solventes/química , Ratas Wistar , Hidrogeles/química
3.
Chemistry ; 28(63): e202201621, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35861028

RESUMEN

We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d-glucosamine has been attached chemically to Cbz-protected l-phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the ß-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l-leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Animales , Antibacterianos/farmacología , Antibacterianos/química , Solventes/química , Plata/química , Nanopartículas del Metal/química , Bacterias Gramnegativas , Bacterias Grampositivas , Hidrogeles/química , Glicoconjugados/farmacología
4.
J Mol Liq ; 351: 118633, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35125571

RESUMEN

The coronaviridae family has generated highly virulent viruses, including the ones responsible for three major pandemics in last two decades with SARS in 2002, MERS outbreak in 2012 and the current nCOVID19 crisis that has turned the world breadthless. Future outbreaks are also a plausible threat to mankind. As computational biologists, we are committed to address the need for a universal vaccine that can deter all these pathogenic viruses in a single shot. Notably, the spike proteins present in all these viruses function as credible PAMPs that are majorly sensed by human TLR4 receptors. Our study aims to recognize the amino acid sequence(s) of the viral spike proteins that are precisely responsible for interaction with human TLR4 and to screen the immunogenic epitopes present in them to develop a multi-epitope multi-target chimeric vaccine against the coronaviruses. Molecular design of the constructed vaccine peptide is qualified in silico; additionally, molecular docking and molecular dynamics simulation studies collectively reveal strong and stable interactions of the vaccine construct with TLRs and MHC receptors. In silico cloning is performed for proficient expression in bacterial systems. In silico immune simulation of the vaccine indicates highly immunogenic nature of the vaccine construct without any allergic response. The present biocomputational study hereby innovates a vaccine candidate - AbhiSCoVac hypothesized as a potent remedy to combat all the virulent forms of coronaviruses.

5.
J Med Virol ; 93(4): 2476-2486, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33404091

RESUMEN

The coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has already resulted in a huge setback to mankind in terms of millions of deaths, while the unavailability of an appropriate therapeutic strategy has made the scenario much more severe. Toll-like receptors (TLRs) are crucial mediators and regulators of host immunity and the role of human cell surface TLRs in SARS-CoV-2 induced inflammatory pathogenesis has been demonstrated recently. However, the functional significance of the human intracellular TLRs including TLR3, 7, 8, and 9 is yet unclear. Hitherto, the involvement of these intracellular TLRs in inducing pro-inflammatory responses in COVID-19 has been reported but the identity of the interacting viral RNA molecule(s) and the corresponding TLRs have not been explored. This study hopes to rationalize the comparative binding of the major SARS-CoV-2 mRNAs to the intracellular TLRs, considering the solvent-based force-fields operational in the cytosolic aqueous microenvironment that predominantly drives these interactions. Our in silico study on the binding of all mRNAs with the intracellular TLRs depicts that the mRNA of NSP10, S2, and E proteins of SARS-CoV-2 are possible virus-associated molecular patterns that bind to TLR3, TLR9, and TLR7, respectively, and trigger downstream cascade reactions. Intriguingly, binding of the viral mRNAs resulted in variable degrees of conformational changes in the ligand-binding domain of the TLRs ratifying the activation of the downstream inflammatory signaling cascade. Taken together, the current study is the maiden report to describe the role of TLR3, 7, and 9 in COVID-19 immunobiology and these could serve as useful targets for the conception of a therapeutic strategy against the pandemic.


Asunto(s)
COVID-19/virología , ARN Mensajero/genética , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Receptores Toll-Like/metabolismo , Sitios de Unión , COVID-19/inmunología , COVID-19/metabolismo , Simulación por Computador , Genoma Viral , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , ARN Mensajero/análisis , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/genética , Receptores Toll-Like/química , Receptores Toll-Like/genética
6.
Adv Exp Med Biol ; 1352: 87-109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35132596

RESUMEN

INTRODUCTION: Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS: This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS: TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION: This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Receptores Toll-Like
7.
J Med Virol ; 92(10): 2105-2113, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32383269

RESUMEN

Coronavirus disease-2019 (COVID-19) outbreak due to novel coronavirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has come out as a major threat for mankind in recent times. It is continually taking an enormous toll on mankind by means of increasing number of deaths, associated comorbidities, and socioeconomic loss around the globe. Unavailability of chemotherapeutics/vaccine has posed tremendous challenges to scientists and doctors for developing an urgent therapeutic strategy. In this connection, the present in silico study aims to understand the sequence divergence of spike protein (the major infective protein of SARS-CoV-2), its mode of interaction with the angiotensin-converting enzyme-2 receptor (ACE2) receptor of human and related animal hosts/reservoir. Moreover, the involvement of the human Toll-like receptors (TLRs) against the spike protein has also been demonstrated. Our data indicated that the spike glycoprotein of SARS-CoV-2 is phylogenetically close to bat coronavirus and strongly binds with ACE2 receptor protein from both human and bat origin. We have also found that cell surface TLRs, especially TLR4 is most likely to be involved in recognizing molecular patterns from SARS-CoV-2 to induce inflammatory responses. The present study supported the zoonotic origin of SARS-CoV-2 from a bat and also revealed that TLR4 may have a crucial role in the virus-induced inflammatory consequences associated with COVID-19. Therefore, selective targeting of TLR4-spike protein interaction by designing competitive TLR4-antagonists could pave a new way to treat COVID-19. Finally, this study is expected to improve our understanding on the immunobiology of SARS-CoV-2 and could be useful in adopting spike protein, ACE2, or TLR-guided intervention strategy against COVID-19 shortly.


Asunto(s)
Alphacoronavirus/química , Enzima Convertidora de Angiotensina 2/química , Receptores Virales/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Receptores Toll-Like/química , Alphacoronavirus/clasificación , Alphacoronavirus/metabolismo , Alphacoronavirus/patogenicidad , Enzima Convertidora de Angiotensina 2/clasificación , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Sitios de Unión , COVID-19/inmunología , COVID-19/virología , Quirópteros/inmunología , Quirópteros/virología , Minería de Datos , Euterios/inmunología , Euterios/virología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/clasificación , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Termodinámica , Receptores Toll-Like/clasificación , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Viverridae/inmunología , Viverridae/virología
8.
Scand J Immunol ; 90(1): e12771, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31054156

RESUMEN

Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.


Asunto(s)
Enfermedades Transmisibles/genética , Receptores Toll-Like/genética , Animales , Predisposición Genética a la Enfermedad , Humanos , Inmunidad/genética , Vigilancia Inmunológica , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Polimorfismo Genético , Relación Estructura-Actividad
9.
Phys Chem Chem Phys ; 21(20): 10726-10737, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31086920

RESUMEN

The emerging category of magneto-fluorescent tartrate-modified MnFe2O4 nano hollow spheres (T-MnFe2O4 NHSs) can be considered as promising candidates for biomedical applications. The interaction of bovine serum albumin (BSA) with T-MnFe2O4 NHSs has been studied using several spectroscopic techniques, which suggest that the interaction occurs by an electrostatic mechanism. Furthermore, BSA enhances the charge transfer transition from the tartrate ligand to the metal ions along with the d-d transition of Fe3+ ions on NHSs surfaces at different pH. Very strong salt bridge formation occurs between the lysine of the BSA surface and the tartrate in basic medium (pH 10), followed by the acidic (pH 3) and neutral medium (pH 7), respectively. Systematic fluorescence microscopic analysis reveals that BSA significantly enhances the contrast of T-MnFe2O4 NHSs in UV and blue light excitation because of the extended charge transfer from BSA to T-MnFe2O4 NHSs. Our report demonstrates great potential in the field of nanotechnology and biomedical applications. In vitro toxicity analysis using RAW 264.7 celline and in vivo studies on Wister rats revealed that the T-MnFe2O4 NHSs are benign. Furthermore, T-MnFe2O4 NHSs also appear to be an antimicrobial agent. Therefore, T-MnFe2O4 NHSs can be explored for future therapeutic applications.


Asunto(s)
Compuestos Férricos/química , Compuestos de Manganeso/química , Nanosferas/química , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Tartratos/química , Animales , Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/toxicidad , Fluorescencia , Ratones , Nanosferas/toxicidad , Células RAW 264.7 , Ratas
10.
J Infect Dis ; 215(6): 954-965, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453850

RESUMEN

Background: Lymphatic filariasis, frequently caused from Wuchereria bancrofti infection, is endemic in several parts of the globe and responsible for human health problems and socioeconomic loss to a large extent. Inflammatory consequences originating from host-parasite interaction play a major role in the disease pathology and allied complications. The identity of the key mediator of this process is yet unknown in filarial research. Methods: Microfilarial protein (MfP) was isolated from the sheath of W. bancrofti microfilariae through ultrafiltration, followed by chromatographic separation. Expression of signaling molecules was studied by enzyme-linked immunosorbent assay and immunoblotting. Binding of MfP to Toll-like receptor 4 (TLR4) was determined by co-immunoprecipitation, fluorescein isothiocyanate-probing, and surface plasmon resonance analysis. Results: We found that MfP (approximately 70 kDa) binds to macrophage-TLR4 and triggers nuclear factor kappa beta activation that upregulates secretion of proinflammatory cytokines. Microfilarial protein failed to induce inflammation in either TLRKO macrophage or macrophage treated with TLR4 inhibitor, indicating that MfP acts through TLR4. We have also detected phenotypic transformation of macrophages from anti-inflammatory (M2) to proinflammatory (M1) subtype after incubation with MfP. Conclusions: Microfilarial protein appears to be a new ligand of TLR4 from W. bancrofti. Determination of its functional attributions in the host-parasite relationship, especially immunopathogenesis of filarial infection, may improve our understanding.


Asunto(s)
Antígenos Helmínticos/inmunología , Proteínas del Helminto/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Wuchereria bancrofti/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Interacciones Huésped-Parásitos , Humanos , Ligandos , Ratones , Ratones Endogámicos BALB C , Microfilarias/inmunología
12.
Prep Biochem Biotechnol ; 46(5): 440-5, 2016 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26176798

RESUMEN

The present study reports statistical optimization of growth conditions of an opportunistic fungal strain Pichia guilliermondii, isolated from the blood of patients suffering from bancroftian filariasis. Seven key determinants, namely, primary inoculums size (%), volume (mL) and pH of media, serum proportion, temperature (°C), incubation time (hr), and agitation speed (rpm) that influence in vitro growth of the pathogen were optimized statistically using response surface methodology (RSM). RSM with seven factors and two-level Box-Behnken design was employed for designing experimental run, prediction of case statistics, suitable exploration of quadratic response surfaces, and constructing a second-order polynomial equation. Analysis of variance (ANOVA) showed that primary inoculums size, volume of culture media, temperature, incubation time, and agitation speed exert most significant influence over fungal growth. The RSM study predicted that optimum fungal growth can be obtained using 10% primary inoculums size in 100 mL culture media with pH 6.0, 6.28% serum, 32.5°C temperature, and 24 hr of incubation, alongside agitation speed at 400 rpm. The desirability of the optimized growth model for P. guilliermondii is 99.123%, which indicated its accuracy and acceptability. Finally, the optimized growth module illustrated in the study could be useful in improving in vitro growth of clinically important P. guilliermondii.


Asunto(s)
Pichia/crecimiento & desarrollo , Medios de Cultivo , Temperatura
13.
Indian J Exp Biol ; 53(9): 574-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26548077

RESUMEN

Organophosphorus (OP) compounds commonly used as pesticides in agriculture cause serious health problems to living beings. The present study enumerates the ameliorating effect of ginger extract (GE) against phosphamidon (PHO, an organophosphorus insecticide) induced hepatotoxicity. GE was prepared from dried ginger and characterized for compound profile and antioxidant activity. Eight groups of albino rats (n = 6) were treated with 1/5th lethal dose of PHO for 5-20 days. Out of the treated 8 groups, 4 were simultaneously fed with GE (1 mg/kg body wt.) along with PHO. Alterations in the levels of hepatocellular oxidative stress (OS) markers in the treated groups indicated an enhanced generation of reactive oxygen species (ROS) and oxidative stress (OS). Upregulation of apoptotic markers, DNA fragmentation and appearance of apoptotic nuclei suggested induction of apoptosis in the liver cell that was found to be attenuated after GE treatment. Moreover, no toxicity and mortality was observed up to 100 mg/kg dose of GE for 30 days in the rat model studied. Thus, GE can be considered as an effective, economical and safe extract to circumvent PHO-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Insecticidas/toxicidad , Intoxicación por Organofosfatos/tratamiento farmacológico , Fosfamidón/toxicidad , Fitoterapia , Extractos Vegetales/uso terapéutico , Zingiber officinale , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Etanol , Hepatocitos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Función Hepática , Masculino , Pruebas de Mutagenicidad , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Raíces de Plantas/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Polifenoles/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/análisis , Solventes , Ultrafiltración
14.
Pharm Biol ; 53(6): 813-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25720973

RESUMEN

CONTEXT: Lymphatic filariasis is a major neglected tropical disease. Diospyros perigrena Gurke (Ebenaceae) was selected for antifilarial chemotherapy because of unavailability of proper medicine. In India, different parts of this plant were used for the treatment of diabetes, diarrhea, dysentery, cholera, mouth ulcers, and wounds. OBJECTIVE: The present study was undertaken to access antifilarial potential and mechanism of action of n-butanol extract (NBE) of D. perigrena stem bark on Setaria cervi Rudolphi (Onchocercidae). MATERIALS AND METHODS: In vitro efficacy and apoptotic mechanism were evaluated by Hoechst, TUNEL, DNA fragmentation assay, pro- and anti-apoptotic gene expression in NBE (250, 125, 62.5, 31.25, and 15.6 µg/ml)-treated S. cervi after 24 h of incubation. Reactive oxygen species (ROS) up-regulation was also determined by GSH, GST, SOD assays, and super oxide anion level. RESULTS: Significant in vitro antifilarial activity of NBE was found 50% inhibitory concentration (IC50): adult = 57.6 µg/ml, microfilariae (mf) = 56.1 µg/ml, and lethal dose (LD100) in mf is 187.17 µg/ml) after 24 h of treatment. NBF-induced apoptosis was proved by Hoechst, TUNEL, RT-PCR, and Western blot method. NBF (250 µg/ml) decreased the level of GSH (17.8%) and GST (65.4%), increased SOD activity (1.42-fold) and super oxide anion production (1.32-fold) in the treated parasite which culminated into ROS up-regulation. DISCUSSION AND CONCLUSION: NBE induced apoptosis in different life cycle stages of S. cervi. In future, a detailed study of NBF will give us a novel antifilarial compound which will be used for antifilarial chemotherapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Diospyros/química , Filaricidas/farmacología , Corteza de la Planta/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Setaria (Nematodo)/efectos de los fármacos , 1-Butanol , Animales , Bisbenzimidazol , Colorantes , ADN/efectos de los fármacos , Filariasis/tratamiento farmacológico , Filariasis/psicología , Etiquetado Corte-Fin in Situ , Setaria (Nematodo)/metabolismo , Solventes , Sales de Tetrazolio , Tiazoles
15.
Exp Parasitol ; 136: 41-58, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24275557

RESUMEN

Lymphatic filariasis, a global cause of morbidity needs much more attention in developing potent therapeutics that can be effective against both microfilariae (mf) and adults. Efficient botanicals that can induce apoptosis of filarial parasites possibly can provide a direction towards developing new class of antifilarials. In this work we have evaluated the antifilarial efficacy of an optimized polyphenol rich ethanolic extract of Azadirachta indica leaves (EEA). A. indica A. Juss has been widely used in the traditional Indian medicinal system 'Ayurveda' for the treatment of a variety of ailments. A thorough investigation towards biochemical and molecular mechanisms describing ROS mediated apoptosis in Setaria cervi was performed. Motility reduction, MTT reduction assay and dye exclusion test have confirmed the micro- and macrofilaricidal potential of EEA. Alterations were visible in mf and trichrome stained section of EEA-treated adult worms. We have found cellular disturbances in EEA-treated parasites characterized by chromatin condensation, in situ DNA fragmentation and nucleosomal DNA laddering. Depletion in worm GSH level and elevation in parasite GST, SOD, catalase, GPx and superoxide anion indicated the generation of ROS. Our results provided experimental evidence supporting that EEA causes a decreased expression of anti-apoptotic genes and increased pro-apoptotic gene expression at the level of both transcription and translation. Here we are reporting for the first time that antifilarial activity of EEA is mediated by ROS up regulation and apoptosis.


Asunto(s)
Azadirachta/química , Filaricidas/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Setaria (Nematodo)/efectos de los fármacos , Análisis de Varianza , Animales , Apoptosis/genética , Bovinos , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Filaricidas/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Ivermectina/farmacología , Masculino , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Polifenoles/aislamiento & purificación , Setaria (Nematodo)/genética , Setaria (Nematodo)/metabolismo
16.
J Food Sci Technol ; 51(11): 3301-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26396324

RESUMEN

The present study aims to maximize the extraction of polyphenols from ginger (Zingiber officinale) through the statistical optimization of three influential process parameters ethanol (EtOH) proportion (%), temperature (°C) and extraction time (min). Response Surface Methodology (RSM) was employed to design experiments and study the interaction effects of these parameters on the extraction process. Analysis of Variance (ANOVA) was used for the analysis of regression coefficient, prediction of equation and case statistics. The optimum conditions for the maximum yield of polyphenols from each gram of ginger were found to be 75 % aqueous EtOH, 40 °C temperature and extraction time of 60 min respectively. The order of relative importance of these three parameters was: EtOH > time > temperature. Antioxidant activity of the extracted polyphenols using optimized parameters was also determined by DPPH assay. DPPH radical scavenging activity of ginger extract was compared with Vitamin C and butyl hydroxy toluene (BHT). Finally, this study revealed a cost effective analytical model to maximize the extraction of polyphenols from ginger with higher antioxidant activity. It was also concluded that at lower concentration ethanolic extract of ginger possess high antioxidant activity in comparison with synthetic antioxidants like vitamin C or BHT and thus it can be applicable as potent natural antioxidant in food and pharmaceutical industries for the preparation of functional food.

17.
Int Immunopharmacol ; 133: 112120, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657497

RESUMEN

Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.


Asunto(s)
Filariasis Linfática , Glutarredoxinas , Wuchereria bancrofti , Glutarredoxinas/inmunología , Glutarredoxinas/metabolismo , Animales , Filariasis Linfática/prevención & control , Filariasis Linfática/inmunología , Humanos , Wuchereria bancrofti/inmunología , Epítopos de Linfocito T/inmunología , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Vacunas de Subunidad/inmunología , Ratones , Antígenos Helmínticos/inmunología , Femenino , Ratones Endogámicos BALB C
18.
MethodsX ; 10: 102158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091959

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory manifestation of the human colon that is linked with colorectal cancer. Development of an appropriate animal model is crucial to study the immunopathophysiology of UC wherein chemical induction is the most popular method of choice. However, unavailability of an optimum experimental model limits the success of this method. The present study aims to establish an optimized model for acetic acid-induced colitis in Sprague Dawley rats. Response Surface Methodology (RSM) with a six-factors Box-Behnken design was employed to generate an improved method of inducing UC in rat, predicting the case statistics, apposite investigation of quadratic response surfaces, and construction of a second-order polynomial equation. UC was diagnosed through three responses viz. weight loss, severity of diarrhea, and appearance of blood in the stool. Analysis of variance alongside RSM jointly revealed that induction of UC can be achieved with highest probability using the combination of parameters that includes 120 gm body weight, 1.5 ml of 4% acetic-acid v/v in distilled water with a single dose of treatment for 24 h including a pre-induction of 5 mins. This optimized UC-induction model was validated in-vivo through disease scoring index and hematological assessments with satisfactory level of desirability. •An improved experimental method for inducing ulcerative colitis (UC) in Sprague Dawley rats has been developed.•Box-Behnken Design-fitted Response Surface Methodology (RSM) was implicated in optimizing the experimental parameters for generating UC.•This statistically optimized and experimentally validated method resembles the recipe for the generation of UC in animal model with the highest possible desirability.

19.
Int J Biol Macromol ; 241: 124649, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119907

RESUMEN

Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Transmisibles , Helmintos , Parásitos , Animales , Humanos , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Transmisibles/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
20.
Methods Mol Biol ; 2673: 431-452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258931

RESUMEN

Since the onset of the COVID-19 pandemic, a number of approaches have been adopted by the scientific communities for developing efficient vaccine candidate against SARS-CoV-2. Conventional approaches of developing a vaccine require a long time and a series of trials and errors which indeed limit the feasibility of such approaches for developing a dependable vaccine in an emergency situation like the COVID-19 pandemic. Hitherto, most of the available vaccines have been developed against a particular antigen of SARS-CoV, spike protein in most of the cases, and intriguingly, these vaccines are not effective against all the pathogenic coronaviruses. In this context, immunoinformatics-based reverse vaccinology approaches enable a robust design of efficacious peptide-based vaccines against all the infectious strains of coronaviruses within a short frame of time. In this chapter, we enumerate the methodological trajectory of developing a universal anti-SARS-CoV-2 vaccine, namely, "AbhiSCoVac," through advanced computational biology-based immunoinformatics approach and its in-silico validation using molecular dynamics simulations.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Pandemias/prevención & control , Simulación del Acoplamiento Molecular , Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunas de Subunidad , Biología Computacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA