RESUMEN
Acid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (â¼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100-300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW.
Asunto(s)
Caseínas/química , Leche/química , Suero Lácteo/química , Animales , Fenómenos Químicos , Precipitación Química , Cristalización , Desecación , Alimentos en Conserva , Lactosa/química , Microscopía Electrónica de Rastreo , Proteínas de la Leche/análisis , Proteínas de la Leche/química , Polvos/química , Proteína de Suero de Leche/químicaRESUMEN
This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as ß-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular ß-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting ß-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive ß-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.
Asunto(s)
Microalgas , Suero Lácteo , beta-Galactosidasa , beta-Galactosidasa/metabolismo , Microalgas/metabolismo , Microalgas/enzimología , Suero Lácteo/metabolismo , Lactosa/metabolismo , Estramenopilos/enzimología , Estramenopilos/metabolismo , Agua Dulce/microbiología , Biodegradación Ambiental , Biomasa , Nitrógeno/metabolismoRESUMEN
Acid-casein production generates waste streams that are rich in nitrogen (in the form of protein and nitrate) and phosphate. This makes this type of waste very difficult to treat using conventional techniques resulting in a high amount of operating cost and costly investment. In this research, the application of single culture or consortium of microalgae for uptake of nitrogen and phosphate in the wastewater of an acid-casein factory was investigated. The waste was a 1:1 mixture of nanofiltered whey permeate and dairy processing wastewater. Monocultures of Chlorella vulgaris, Tetradesmus obloquus, Nonnochlropsis ocenica and a consortium of the three microalgae were analyzed. The results showed that the consortium exhibited more efficient nitrogen and phosphate removal compared to the individual species. The consortium was able to rapidly hydrolyse exogenous protein present in the waste medium, removing 88% of protein and breaking down complex protein molecules into simpler compounds (such as nitrate) for assimilation into the biomass. In the first fourteen days of cultivation, the rate of nitrate assimilation by the consortium biomass was lower than that of nitrate formation from protein degradation, leading to a net increase in nitrate concentration in the medium. As protein source was depleted and biomass concentration increased, however, the rate of nitrate assimilation began to exceed that of nitrate formation allowing for net removal of nitrate. The microalgae consortium was shown to successfully bioremediate all nitrates by day 21. It was indicated that Chlorella and Nannochloropsis species were responsible for nitrogen removal in monocultures. Phosphate, on the other hand, was efficiently removed by Tetradesmus. The results indicated that a consortium cultivation of three species of microalgae led to effective elimination of both nitrogen and phosphate. Combined flow-cytometry and microscopy analyses revealed that Chlorella overtook Tetradesmus and Nannochloropsis to emerge as the dominant population in the consortium by the end of the cultivation cycle. It can be concluded that the application of microalgae consortium for simultaneous recovery of nitrogen and phosphate is a promising approach for treating acid-casein wastewater.