Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(15): e103457, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567721

RESUMEN

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Glicosilación , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2 , Receptor Kainato GluK3
2.
Ann Neurol ; 94(4): 745-761, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37341588

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS: We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS: Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION: Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , MicroARNs , Humanos , Ratones , Animales , Epilepsia del Lóbulo Temporal/terapia , Lóbulo Temporal , Hipocampo , Epilepsia Refractaria/genética , Epilepsia Refractaria/terapia , Convulsiones
3.
J Neurosci ; 42(49): 9253-9262, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36288945

RESUMEN

Kainate receptors (KARs) form a family of ionotropic glutamate receptors that regulate the activity of neuronal networks by both presynaptic and postsynaptic mechanisms. Their implication in pathologies is well documented for epilepsy. The higher prevalence of epileptic symptoms in Alzheimer's disease (AD) patients questions the role of KARs in AD. Here we investigated whether the synaptic expression and function of KARs was impaired in mouse models of AD. We addressed this question by immunostaining and electrophysiology at synapses between mossy fibers and CA3 pyramidal cells, in which KARs are abundant and play a prominent physiological role. We observed a decrease of the immunostaining for GluK2 in the stratum lucidum in CA3, and of the amplitude and decay time of synaptic currents mediated by GluK2-containing KARs in an amyloid mouse model (APP/PS1) of AD. Interestingly, a similar phenotype was observed in CA3 pyramidal cells in male and female mice with a genetic deletion of either presenilin or APP/APLP2 as well as in organotypic cultures treated with γ-secretase inhibitors. Finally, the GluK2 protein interacts with full-length and C-terminal fragments of APP. Overall, our data suggest that APP stabilizes KARs at synapses, possibly through a transsynaptic mechanism, and this interaction is under the control the γ-secretase proteolytic activity of presenilin.SIGNIFICANCE STATEMENT Synaptic impairment correlates strongly with cognitive deficits in Alzheimer's disease (AD). In this context, many studies have addressed the dysregulation of AMPA and NMDA ionotropic glutamate receptors. Kainate receptors (KARs), which form the third family of iGluRs, represent an underestimated actor in the regulation of neuronal circuits and have not yet been examined in the context of AD. Here we provide evidence that synaptic KARs are markedly impaired in a mouse model of AD. Additional experiments indicate that the γ-secretase activity of presenilin acting on the amyloid precursor protein controls synaptic expression of KAR. This study clearly indicates that KARs should be taken into consideration whenever addressing synaptic dysfunction and related cognitive deficits in the context of AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Kaínico , Presenilina-1 , Receptores de Ácido Kaínico , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Kaínico/farmacología , Fibras Musgosas del Hipocampo/fisiología , Presenilina-1/metabolismo , Presenilinas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Receptor de Ácido Kaínico GluK2
4.
Cereb Cortex ; 32(14): 2907-2923, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34730179

RESUMEN

Kainate receptors (KARs) are key regulators of synaptic circuits by acting at pre- and postsynaptic sites through either ionotropic or metabotropic actions. KARs can be activated by kainate, a potent neurotoxin, which induces acute convulsions. Here, we report that the acute convulsive effect of kainate mostly depends on GluK2/GluK5 containing KARs. By contrast, the acute convulsive activity of pilocarpine and pentylenetetrazol is not alleviated in the absence of KARs. Unexpectedly, the genetic inactivation of GluK2 rather confers increased susceptibility to acute pilocarpine-induced seizures. The mechanism involves an enhanced excitability of GluK2-/- CA3 pyramidal cells compared with controls upon pilocarpine application. Finally, we uncover that the absence of GluK2 increases pilocarpine modulation of Kv7/M currents. Taken together, our findings reveal that GluK2-containing KARs can control the excitability of hippocampal circuits through interaction with the neuromodulatory cholinergic system.


Asunto(s)
Ácido Kaínico , Pilocarpina , Receptores de Ácido Kaínico , Región CA1 Hipocampal/metabolismo , Colinérgicos/farmacología , Eliminación de Gen , Humanos , Pilocarpina/toxicidad , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Receptor de Ácido Kaínico GluK2
5.
Nat Rev Neurosci ; 18(4): 208-220, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28251990

RESUMEN

The CA3 region of the hippocampus is important for rapid encoding of memory. Computational theories have proposed specific roles in hippocampal function and memory for the sparse inputs from the dentate gyrus to CA3 and for the extended local recurrent connectivity that gives rise to the CA3 autoassociative network. Recently, we have gained considerable new insight into the operation and plasticity of CA3 circuits, including the identification of novel forms of synaptic plasticity and their underlying mechanisms, and structural plasticity in the GABAergic control of CA3 circuits. In addition, experimental links between synaptic plasticity of CA3 circuits and memory are starting to emerge.


Asunto(s)
Región CA3 Hipocampal/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Animales , Dendritas/fisiología , Neuronas GABAérgicas/fisiología , Modelos Neurológicos
6.
Alzheimers Dement ; 18(11): 2099-2116, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35076178

RESUMEN

In Alzheimer's disease (AD), the distribution of the amyloid precursor protein (APP) and its fragments other than amyloid beta, has not been fully characterized. Here, we investigate the distribution of APP and its fragments in human AD brain samples and in mouse models of AD in reference to its proteases, synaptic proteins, and histopathological features characteristic of the AD brain, by combining an extensive set of histological and analytical tools. We report that the prominent somatic distribution of APP observed in control patients remarkably vanishes in human AD patients to the benefit of dense accumulations of extra-somatic APP, which surround dense-core amyloid plaques enriched in APP-Nter. These features are accentuated in patients with familial forms of the disease. Importantly, APP accumulations are enriched in phosphorylated tau and presynaptic proteins whereas they are depleted of post-synaptic proteins suggesting that the extra-somatic accumulations of APP are of presynaptic origin. Ultrastructural analyses unveil that APP concentrates in autophagosomes and in multivesicular bodies together with presynaptic vesicle proteins. Altogether, alteration of APP distribution and its accumulation together with presynaptic proteins around dense-core amyloid plaques is a key histopathological feature in AD, lending support to the notion that presynaptic failure is a strong physiopathological component of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Ratones , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Ratones Transgénicos
7.
J Neurochem ; 156(3): 270-272, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33274445

RESUMEN

This is an Editorial Highlight of a manuscript by Oldani et al. (2020) (Oldani et al. 2020) in the current issue of the Journal of Neurochemistry, in which the authors describe synaptoPAC, a new optogenetic tool. SynaptoPAC is targeted to pre-synaptic compartments and can be used for light-induced increase of the levels of cAMP. Pre-synaptic plasticity, defined as activity-dependent modulation of neurotransmitter release, occurs over a variety of time scales. At a subset of synapses in the brain, long-term forms of pre-synaptic facilitation depend on an increase in the levels of cAMP. Light-induced modulation of cAMP at synapses expressing cAMP-dependent facilitation, has the great potential to mimic pre-synaptic plasticity at genetically targeted synapses. Therefore, synaptoPAC constitutes a powerful tool to study the role of pre-synaptic potentiation in the activity of selected neuronal circuits in relation to behaving animals with a high temporal and spatial precision.


Asunto(s)
Optogenética , Sinapsis , Animales , Plasticidad Neuronal , Neuronas , Transmisión Sináptica
8.
Neurobiol Dis ; 154: 105345, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33766653

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline related to deficits in synaptic transmission and plasticity. We report in APP/PS1 mice, a double transgenic mouse model of AD, that females displayed an early burden of Aß plaques load in the stratum moleculare of the dentate gyrus (DG) together with prominent neuroinflammatory activation of astrocytes and microglia. Robust deficits in hippocampus-dependent memory tasks were observed in APP/PS1 female mice as early as 3 months of age. We then studied the functional properties of the lateral perforant path (LPP) to DG granule cells. Remarkably DG granule cells displayed higher intrinsic excitability in APP/PS1 female mice. We showed that the long term potentiation of population spike amplitude induced by high frequency stimulation (HFS) at LPP-DG granule cells synapse is impaired in APP/PS1 female mice. HFS induced plasticity of intrinsic excitability in DG granule cells without inducing noticeable modification of synaptic strength. Furthermore, the enhanced intrinsic excitability was potentiated to a greater extent in APP/PS1 as compared to control mice following HFS. Our study shows that changes in the intrinsic excitability of DG granule cells in AD contribute to the dysfunctional transfer of information from the entorhinal cortex to the hippocampus.


Asunto(s)
Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Plasticidad Neuronal/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética
9.
EMBO J ; 36(19): 2815-2828, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768717

RESUMEN

Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.


Asunto(s)
Demencia/genética , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Adulto , Edad de Inicio , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Estudios de Casos y Controles , Demencia/epidemiología , Demencia/psicología , Forminas , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Fenotipo , Factores de Riesgo , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/genética
10.
J Neurosci ; 39(21): 4193-4205, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886015

RESUMEN

Early Alzheimer's disease (AD) affects the brain non-uniformly, causing hippocampal memory deficits long before wide-spread brain degeneration becomes evident. Here we addressed whether mossy fiber inputs from the dentate gyrus onto CA3 principal cells are affected in an AD mouse model before amyloid ß plaque deposition. We recorded from CA3 pyramidal cells in a slice preparation from 6-month-old male APP/PS1 mice, and studied synaptic properties and intrinsic excitability. In parallel we performed a morphometric analysis of mossy fiber synapses following viral based labeling and 3D-reconstruction. We found that the basal structural and functional properties as well as presynaptic short-term plasticity at mossy fiber synapses are unaltered at 6 months in APP/PS1 mice. However, transient potentiation of synaptic transmission mediated by activity-dependent release of lipids was abolished. Whereas the presynaptic form of mossy fiber long-term potentiation (LTP) was not affected, the postsynaptic LTP of NMDAR-EPSCs was reduced. In addition, we also report an impairment in feedforward inhibition in CA3 pyramidal cells. This study, together with our previous work describing deficits at CA3-CA3 synapses, provides evidence that early AD affects synapses in a projection-dependent manner at the level of a single neuronal population.SIGNIFICANCE STATEMENT Because loss of episodic memory is considered the cognitive hallmark of Alzheimer's disease (AD), it is important to study whether synaptic circuits involved in the encoding of episodic memory are compromised in AD mouse models. Here we probe alterations in the synaptic connections between the dentate gyrus and CA3, which are thought to be critical for enabling episodic memories to be formed and stored in CA3. We found that forms of synaptic plasticity specific to these synaptic connections are markedly impaired at an early stage in a mouse model of AD, before deposition of ß amyloid plaques. Together with previous work describing deficits at CA3-CA3 synapses, we provide evidence that early AD affects synapses in an input-dependent manner within a single neuronal population.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA3 Hipocampal/fisiopatología , Fibras Musgosas del Hipocampo/fisiopatología , Células Piramidales/fisiología , Sinapsis/patología , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Sinapsis/fisiología
11.
J Neurosci ; 37(3): 587-598, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100741

RESUMEN

Despite extensive studies in hippocampal slices and incentive from computational theories, the synaptic mechanisms underlying information transfer at mossy fiber (mf) connections between the dentate gyrus (DG) and CA3 neurons in vivo are still elusive. Here we used an optogenetic approach in mice to selectively target and control the activity of DG granule cells (GCs) while performing whole-cell and juxtacellular recordings of CA3 neurons in vivo In CA3 pyramidal cells (PCs), mf-CA3 synaptic responses consisted predominantly of an IPSP at low stimulation frequency (0.05 Hz). Upon increasing the frequency of stimulation, a biphasic response was observed consisting of a brief mf EPSP followed by an inhibitory response lasting on the order of 100 ms. Spike transfer at DG-CA3 interneurons recorded in the juxtacellular mode was efficient at low presynaptic stimulation frequency and appeared insensitive to an increased frequency of GC activity. Overall, this resulted in a robust and slow feedforward inhibition of spike transfer at mf-CA3 pyramidal cell synapses. Short-term plasticity of EPSPs with increasing frequency of presynaptic activity allowed inhibition to be overcome to reach spike discharge in CA3 PCs. Whereas the activation of GABAA receptors was responsible for the direct inhibition of light-evoked spike responses, the slow inhibition of spiking activity required the activation of GABAB receptors in CA3 PCs. The slow inhibitory response defined an optimum frequency of presynaptic activity for spike transfer at ∼10 Hz. Altogether these properties define the temporal rules for efficient information transfer at DG-CA3 synaptic connections in the intact circuit. SIGNIFICANCE STATEMENT: Activity-dependent changes in synaptic strength constitute a basic mechanism for memory. Synapses from the dentate gyrus (DG) to the CA3 area of the hippocampus are distinctive for their prominent short-term plasticity, as studied in slices. Plasticity of DG-CA3 connections may assist in the encoding of precise memory in the CA3 network. Here we characterize DG-CA3 synaptic transmission in vivo using targeted optogenetic activation of DG granule cells while recording in whole-cell patch-clamp and juxtacellular configuration from CA3 pyramidal cells and interneurons. We show that, in vivo, short-term plasticity of excitatory inputs to CA3 pyramidal cells combines with robust feedforward inhibition mediated by both GABAA and GABAB receptors to control the efficacy and temporal rules for information transfer at DG-CA3 connections.


Asunto(s)
Potenciales de Acción/fisiología , Antagonistas del GABA/farmacología , Fibras Musgosas del Hipocampo/fisiología , Inhibición Neural/fisiología , Receptores de GABA-A/fisiología , Receptores de GABA-B/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Transgénicos , Fibras Musgosas del Hipocampo/efectos de los fármacos , Inhibición Neural/efectos de los fármacos
12.
J Physiol ; 596(4): 703-716, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29218821

RESUMEN

KEY POINTS: CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. ABSTRACT: Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Potenciación a Largo Plazo , Fibras Musgosas del Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/metabolismo , Subunidades de Proteína , Transducción de Señal
13.
Mol Pharmacol ; 91(6): 576-585, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28360094

RESUMEN

Kainate receptors (KARs) consist of a class of ionotropic glutamate receptors, which exert diverse pre- and postsynaptic functions through complex signaling regulating the activity of neural circuits. Whereas numerous small-molecule positive allosteric modulators of the ligand-binding domain of (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors have been reported, no such ligands are available for KARs. In this study, we investigated the ability of three benzothiadiazine-based modulators to potentiate glutamate-evoked currents at recombinantly expressed KARs. 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM344) potentiated glutamate-evoked currents of GluK2a 21-fold at the highest concentration tested (200 µM), with an EC50 of 79 µM. BPAM344 markedly decreased desensitization kinetics (from 5.5 to 775 ms), whereas it only had a minor effect on deactivation kinetics. 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521) potentiated the recorded peak current amplitude of GluK2a 12-fold at a concentration of 300 µM with an EC50 value of 159 µM, whereas no potentiation of the glutamate-evoked response was observed for 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) at the highest concentration of modulator tested (300 µM). BPAM344 (100 µM) also potentiated the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b (5-fold), as well as the AMPA receptor subunit GluA1i (5-fold). X-ray structures of the three modulators in the GluK1 ligand-binding domain were determined, locating two modulator-binding sites at the GluK1 dimer interface. In conclusion, this study may enable the design of new positive allosteric modulators selective for KARs, which will be of great interest for further investigation of the function of KARs in vivo and may prove useful for pharmacologically controlling the activity of neuronal networks.


Asunto(s)
Agonistas de Aminoácidos Excitadores/química , Agonistas de Aminoácidos Excitadores/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Secundaria de Proteína , Ratas , Receptores de Ácido Kaínico/agonistas , Relación Estructura-Actividad , Difracción de Rayos X
14.
EMBO J ; 32(4): 496-510, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23288040

RESUMEN

Calmodulin-dependent kinase II (CaMKII) is key for long-term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity-dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre- and postsynaptic stimulation at hippocampal mossy fibre synapses induces long-term depression of kainate receptor (KAR)-mediated responses, which depends on Ca(2+) influx, activation of CaMKII, and on the GluK5 subunit of KARs. CaMKII phosphorylation of three residues in the C-terminal domain of GluK5 subunit markedly increases lateral mobility of KARs, possibly by decreasing the binding of GluK5 to PSD-95. CaMKII activation also promotes surface expression of KARs at extrasynaptic sites, but concomitantly decreases its synaptic content. Using a molecular replacement strategy, we demonstrate that the direct phosphorylation of GluK5 by CaMKII is necessary for KAR-LTD. We propose that CaMKII-dependent phosphorylation of GluK5 is responsible for synaptic depression by untrapping of KARs from the PSD and increased diffusion away from synaptic sites.


Asunto(s)
Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores de Ácido Kaínico/metabolismo , Sinapsis/metabolismo , Animales , Células COS , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Chlorocebus aethiops , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Fosforilación/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptores de Ácido Kaínico/genética , Sinapsis/genética
15.
Eur J Neurosci ; 43(10): 1366-78, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27199162

RESUMEN

Recent data have provided evidence that microglia, the brain-resident macrophage-like cells, modulate neuronal activity in both physiological and pathophysiological conditions, and microglia are therefore now recognized as synaptic partners. Among different neuromodulators, purines, which are produced and released by microglia, have emerged as promising candidates to mediate interactions between microglia and synapses. The cellular effects of purines are mediated through a large family of receptors for adenosine and for ATP (P2 receptors). These receptors are present at brain synapses, but it is unknown whether they can respond to microglia-derived purines to modulate synaptic transmission and plasticity. Here, we used a simple model of adding immune-challenged microglia to mouse hippocampal slices to investigate their impact on synaptic transmission and plasticity at hippocampal mossy fibre (MF) synapses onto CA3 pyramidal neurons. MF-CA3 synapses show prominent forms of presynaptic plasticity that are involved in the encoding and retrieval of memory. We demonstrate that microglia-derived ATP differentially modulates synaptic transmission and short-term plasticity at MF-CA3 synapses by acting, respectively, on presynaptic P2X4 receptors and on adenosine A1 receptors after conversion of extracellular ATP to adenosine. We also report that P2X4 receptors are densely located in the mossy fibre tract in the dentate gyrus-CA3 circuitry. In conclusion, this study reveals an interplay between microglia-derived purines and MF-CA3 synapses, and highlights microglia as potent modulators of presynaptic plasticity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina/metabolismo , Microglía/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal , Receptores Purinérgicos P2X4/fisiología , Transmisión Sináptica , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Apirasa/farmacología , Células Cultivadas , Potenciales Postsinápticos Excitadores , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Fibras Musgosas del Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Agonistas del Receptor Purinérgico P2X/farmacología , Purinas/farmacología , Transmisión Sináptica/efectos de los fármacos
16.
Hippocampus ; 24(9): 1059-69, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24753134

RESUMEN

Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three-chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild-type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild-types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social- and cognition-related phenotypes relevant to ASD.


Asunto(s)
Trastorno Autístico/fisiopatología , Hipocampo/fisiopatología , Aprendizaje por Laberinto/fisiología , Receptores de Ácido Kaínico/metabolismo , Aprendizaje Inverso/fisiología , Conducta Social , Animales , Ansiedad/fisiopatología , Cognición/fisiología , Modelos Animales de Enfermedad , Endofenotipos , Conducta Exploratoria/fisiología , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Receptores de Ácido Kaínico/genética , Factores de Tiempo , Receptor de Ácido Kaínico GluK2
17.
Eur J Neurosci ; 39(11): 1835-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24738709

RESUMEN

Kainate receptors (KARs) consist of a family of ionotropic glutamate receptors composed of the combinations of five subunits, GluK1-GluK5. Although KARs display close structural homology with AMPA receptors, they serve quite distinct functions. A great deal of our knowledge of the molecular and functional properties of KARs comes from their study in the hippocampus. This review aims at summarising the functions of KARs in the regulation of the activity of hippocampal synaptic circuits at the adult stage and throughout development. We focus on the variety of roles played by KARs in physiological conditions of activation, at pre- and postsynaptic sites, in different cell types and through either metabotropic or ionotropic actions. Finally, we present some of the few attempts to link the role of KARs in the regulation of local hippocampal circuits to the behavioural functions of the hippocampus in health and diseases.


Asunto(s)
Hipocampo/metabolismo , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Animales , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Humanos , Plasticidad Neuronal , Receptores de Ácido Kaínico/genética , Sinapsis/metabolismo
18.
Cereb Cortex ; 23(2): 323-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22345355

RESUMEN

Progress in understanding the roles of kainate receptors (KARs) in synaptic integration, synaptic networks, and higher brain function has been hampered by the lack of selective pharmacological tools. We have found that UBP310 and related willardiine derivatives, previously characterized as selective GluK1 and GluK3 KAR antagonists, block postsynaptic KARs at hippocampal mossy fiber (MF) CA3 synapses while sparing AMPA and NMDA receptors. We further show that UBP310 is an antagonist of recombinant GluK2/GluK5 receptors, the major population of KARs in the brain. Postsynaptic KAR receptor blockade at MF synapses significantly reduces the sustained depolarization, which builds up during repetitive activity, and impacts on spike transmission mediated by heterosynaptic signals. In addition, KARs present in aberrant MF synapses in the epileptic hippocampus were also blocked by UBP310. Our results support a specific role for postsynaptic KARs in synaptic integration of CA3 pyramidal cells and describe a tool that will be instrumental in understanding the physiopathological role of KARs in the brain.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Fibras Musgosas del Hipocampo/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
19.
Cereb Cortex ; 23(3): 531-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22402347

RESUMEN

Activation of protein kinase A (PKA) pathway at presynaptic terminals plays a crucial role in the supply of synaptic vesicles (SVs) from the reserve pool, affecting the steady-state level of activity and the reconstitution of the readily releasable pool after intense stimulation. However, the identity of the stimuli activating this pathway is undefined. Using fluorescence resonance energy transfer and molecular genetic, we show that kainate, through the activation of presynaptic kainate receptors, induces PKA activation and enhances synapsin I phosphorylation at PKA-specific residues. This leads to a dispersion of synapsin I immunoreactivity, which is accompanied by a PKA-dependent increase in the rate of SV recycling at the growth cone and by an enhanced miniature excitatory postsynaptic currents frequency in mature networks. Selective activation of this pathway is induced by the native neurotransmitter glutamate, when applied in the high nanomolar range. These data identify glutamate, specifically acting on KARs, as one of the stimuli able to induce phosphorylation of synapsin at PKA sites, both at the axonal growth cone and at the mature synapse, thus increasing SV availability and contributing to plasticity phenomena.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Conos de Crecimiento/fisiología , Plasticidad Neuronal/fisiología , Receptores de Ácido Kaínico/metabolismo , Vesículas Sinápticas/fisiología , Animales , Células Cultivadas , Activación Enzimática/fisiología , Agonistas de Aminoácidos Excitadores/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Inmunohistoquímica , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Sinapsinas/metabolismo
20.
J Neurosci ; 32(49): 17882-93, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223307

RESUMEN

The grik2 gene, coding for the kainate receptor subunit GluK2 (formerly GluR6), is associated with autism spectrum disorders and intellectual disability. Here, we tested the hypothesis that GluK2 could play a role in the appropriate maturation of synaptic circuits involved in learning and memory. We show that both the functional and morphological maturation of hippocampal mossy fiber to CA3 pyramidal cell (mf-CA3) synapses is delayed in mice deficient for the GluK2 subunit (GluK2⁻/⁻). In GluK2⁻/⁻ mice this deficit is manifested by a transient reduction in the amplitude of AMPA-EPSCs at a critical time point of postnatal development, whereas the NMDA component is spared. By combining multiple probability peak fluctuation analysis and immunohistochemistry, we have provided evidence that the decreased amplitude reflects a decrease in the quantal size per mf-CA3 synapse and in the number of active synaptic sites. Furthermore, we analyzed the time course of structural maturation of CA3 synapses by confocal imaging of YFP-expressing cells followed by tridimensional (3D) anatomical reconstruction of thorny excrescences and presynaptic boutons. We show that major changes in synaptic structures occur subsequently to the sharp increase in synaptic transmission, and more importantly that the course of structural maturation of synaptic elements is impaired in GluK2⁻/⁻ mice. This study highlights how a mutation in a gene linked to intellectual disability in the human may lead to a transient reduction of synaptic strength during postnatal development, impacting on the proper formation of neural circuits linked to memory.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual/patología , Fibras Musgosas del Hipocampo/crecimiento & desarrollo , Receptores de Ácido Kaínico/fisiología , Animales , Animales no Consanguíneos , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/patología , Fibras Musgosas del Hipocampo/fisiopatología , N-Metilaspartato/farmacología , Terminales Presinápticos/patología , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/genética , Sinapsis/patología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Receptor de Ácido Kaínico GluK2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA