Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 42(6): 1159-70, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26070486

RESUMEN

Increased activity of T follicular helper (Tfh) cells plays a major pathogenic role in systemic lupus erythematosus (SLE). However, the mechanisms that cause aberrant Tfh cell responses in SLE remain elusive. Here we showed the OX40 ligand (OX40L)-OX40 axis contributes to the aberrant Tfh response in SLE. OX40L was expressed by myeloid antigen-presenting cells (APCs), but not B cells, in blood and in inflamed tissues in adult and pediatric SLE patients. The frequency of circulating OX40L-expressing myeloid APCs positively correlated with disease activity and the frequency of ICOS(+) blood Tfh cells in SLE. OX40 signals promoted naive and memory CD4(+) T cells to express multiple Tfh cell molecules and were sufficient to induce them to become functional B cell helpers. Immune complexes containing RNA induced OX40L expression on myeloid APCs via TLR7 activation. Our study provides a rationale to target the OX40L-OX40 axis as a therapeutic modality for SLE.


Asunto(s)
Lupus Eritematoso Sistémico/inmunología , Células Mieloides/inmunología , Ligando OX40/metabolismo , Receptores OX40/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Adulto , Anciano , Presentación de Antígeno , Linfocitos B/inmunología , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Memoria Inmunológica , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , ARN/inmunología , Transducción de Señal , Receptor Toll-Like 7/metabolismo , Adulto Joven
2.
Pharmacology ; 109(4): 216-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569476

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Asunto(s)
Diferenciación Celular , Autofagia Mediada por Chaperones , Proteínas del Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoina , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Tretinoina/farmacología , Autofagia Mediada por Chaperones/efectos de los fármacos , Línea Celular Tumoral , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSC70/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacología
3.
Cell Mol Life Sci ; 79(10): 518, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36104457

RESUMEN

In our search for innovative drugs that could improve periodontal treatment outcomes, autophagy and its anomalies represent a potential target for therapeutic intervention. We sought to identify autophagy defects in murine experimental periodontitis and study the effectiveness of P140, a phosphopeptide known to bind HSPA8 and inhibit its chaperone properties, and that corrects autophagy dysfunctions in several autoimmune and inflammatory diseases. Experimental periodontitis was induced by placing silk ligature around mandibular first molars. Sick mice were treated intraperitoneally with either P140 or a control, scrambled peptide. After 10 days, mandibles were harvested and bone loss was measured by micro-CT. Immune cells infiltration was studied by histological analyses. Cytokines levels and autophagy-related markers expression were evaluated by qRT-PCR and western blotting. A comparison with non-affected mice revealed significant alterations in the autophagy processes in mandibles of diseased mice, especially in the expression of sequestosome 1/p62, Maplc3b, Atg5, Ulk1, and Lamp2. In vivo, we showed that P140 normalized the dysregulated expression of several autophagy-related genes. In addition, it diminished the infiltration of activated lymphocytes and pro-inflammatory cytokines. Unexpectedly P140 decreased the extent of bone loss affecting the furcation and alveolar areas. Our results indicate that P140, which was safe in clinical trials including hundreds of autoimmune patients with systemic lupus erythematosus, not only decreases the inflammatory effects observed in mandibular tissues of ligation-induced mice but strikingly also contributes to bone preservation. Therefore, the therapeutic peptide P140 could be repositioned as a decisive breakthrough for the future therapeutic management of periodontitis.


Asunto(s)
Fragmentos de Péptidos , Periodontitis , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Ratones , Fragmentos de Péptidos/farmacología , Periodontitis/tratamiento farmacológico , Fosfopéptidos
4.
J Autoimmun ; 128: 102814, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35298976

RESUMEN

Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk. We conducted a series of experiments in three distinct mouse models of colitis to test the effectiveness of therapeutic P140, a phosphopeptide that corrects autophagy dysfunctions in other autoimmune and inflammatory diseases. Colitis was experimentally induced in mice by administering dextran sodium sulfate and 2,4,6 trinitrobenzene sulfonic acid. Transgenic mice lacking both il-10 and iRhom2 - involved in tumor necrosis factor α secretion - were also used. In the three models investigated, P140 treatment attenuated the clinical and histological severity of colitis. Post-treatment, altered expression of several macroautophagy and chaperone-mediated autophagy markers, and of pro-inflammatory mediators was corrected. Our results demonstrate that therapeutic intervention with an autophagy modulator improves colitis in animal models. These findings highlight the potential of therapeutic peptide P140 for use in the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Autofagia , Proteínas Portadoras , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Lisosomas/metabolismo , Ratones
5.
J Autoimmun ; 120: 102633, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932829

RESUMEN

Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A. No cross-reaction was observed with LAMP2B or LAMP2C variants, with dsDNA or mononucleosomes, or with heat-shock protein A8. Moreover, administering chromatography-purified LAMP2A autoantibodies to MRL/lpr mice accelerated mortality. Furthermore, flow cytometry revealed elevated cell-surface expression of LAMP2A on MRL/lpr B cells. These findings reveal the involvement of a new class of autoantibodies targeting the C-terminus of LAMP2A, a receptor for cytosolic proteins targeted for degradation via chaperone-mediated autophagy. These autoantibodies could affect the autophagy process, which is abnormally upregulated in lupus. The data presented support a novel connection between autophagy dysregulation, autoimmune processes and pathophysiology in lupus.


Asunto(s)
Antígenos/inmunología , Susceptibilidad a Enfermedades/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Lisosomas/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad , Autofagia/inmunología , Biomarcadores , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endosomas/inmunología , Endosomas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas de Choque Térmico/inmunología , Humanos , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/inmunología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Péptidos/inmunología
6.
J Autoimmun ; 108: 102418, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029330

RESUMEN

Dysregulation of autophagy has been implicated in the development of various disease indications including autoimmune diseases. Here we identified hitherto unsuspected molecular alterations of autophagy occurring at an early stage of the macroautophagy pathway in the salivary glands and spleen of NOD.H-2h4 mice that develop a primary Sjögren's-like syndrome. In this study we investigated the capacity of phosphopeptide P140 to correct immune alteration in NOD.H-2h4 mice and the effect on neogenesis of tertiary lymphoid structures in salivary glands, which is hallmark characteristic of SS. Phosphopeptide P140 known to lower excessive autophagy processes, rescued sick NOD.H-2h4 mice from some autophagy defects and significantly reduced formation of tertiary lymphoid structures in salivary glands. Mechanistically, the frequency of activated CD44high/CD62Llow CD4+ T cell populations was significantly decreased and this reduction was correlated with an increased number of CD44low/CD62Lhigh resting T cells. The CD8 T cell compartment was not affected. P140 down-regulated the maturation and differentiation of B cells into plasma cells, and decreased IgG and autoantibody secretion. It had no effect on germinal centers B cells (B220+ FAS+GL-7+) that are an important compound of the B cell humoral immune response. Together with previous data generated in MRL/lpr mice that develop some features of Sjögren's syndrome associated to other inflammatory and autoimmune defects, our present findings strongly reinforce the potential of autophagy modulators, such as P140, for treating patients with Sjögren's syndrome.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Síndrome de Sjögren/etiología , Animales , Autoanticuerpos/inmunología , Autoinmunidad , Autofagia/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Modelos Animales de Enfermedad , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos MRL lpr , Ratones Endogámicos NOD , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
7.
Cell Microbiol ; 20(7): e12835, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29488316

RESUMEN

Elucidating receptor-ligand and protein-protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2- and PvRON4-derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid-long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine-rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.


Asunto(s)
Antígenos CD/metabolismo , Adhesión Celular , Interacciones Huésped-Patógeno , Plasmodium vivax/fisiología , Proteínas Protozoarias/metabolismo , Receptores de Transferrina/metabolismo , Reticulocitos/parasitología , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Resonancia por Plasmón de Superficie
8.
J Autoimmun ; 94: 16-32, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30219390

RESUMEN

Nowadays, pharmacologic treatments of autoinflammatory diseases are largely palliative rather than curative. Most of them result in non-specific immunosuppression, which can be associated with broad disruption of natural and induced immunity with significant and sometimes serious unwanted injuries. Among the novel strategies that are under development, tools that modulate the immune system to restore normal tolerance mechanisms are central. In these approaches, peptide therapeutics constitute a class of agents that display many physicochemical advantages. Within this class of potent drugs, the phosphopeptide P140 is very promising for treating patients with lupus, and likely also patients with other chronic inflammatory diseases. We discovered that P140 targets autophagy, a finely orchestrated catabolic process, involved in the regulation of inflammation and in the biology of immune cells. In vitro, P140 acts directly on a particular form of autophagy called chaperone-mediated autophagy, which seems to be hyperactivated in certain subsets of lymphocytes in lupus and in other autoinflammatory settings. In lupus, the "correcting" effect of P140 on autophagy results in a weaker signaling of autoreactive T cells, leading to a significant improvement of pathophysiological status of treated mice. These findings also demonstrated ex vivo in human cells, open novel avenues of therapeutic intervention in pathological conditions, in which specific and not general targeting is highly pursued in the context of the new action plans for personalized medicines.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Autofagia/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Lupus Eritematoso Sistémico/terapia , Terapia Molecular Dirigida/métodos , Fragmentos de Péptidos/uso terapéutico , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Autofagia/genética , Autofagia/inmunología , Factor Activador de Células B/antagonistas & inhibidores , Factor Activador de Células B/genética , Factor Activador de Células B/inmunología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/patología , Ratones , Medicina de Precisión
9.
J Autoimmun ; 90: 132-145, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486915

RESUMEN

Sjögren's syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic infiltrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, major organ involvement, neuropathies and lymphomas. Current treatments only focus on relieving symptoms and do not target the origin of the disease, which is largely unknown. The question we addressed here was whether some defects exist in autophagy processes in Sjögren's syndrome and if they can be corrected or minimized using an appropriate mechanism-driven treatment targeting this central survival pathway. Using a recognized murine model of secondary Sjögren's syndrome, we identified molecular alterations of autophagy occurring in the salivary glands of MRL/lpr mice, and discovered that opposite (up- or down-regulated) autophagy events can arise in distinct organs of the same mouse strain, here in lymphoid organs and salivary glands. We showed further that the therapeutic P140 peptide, known to directly act on chaperone-mediated autophagy, rescued MRL/lpr mice from cellular infiltration and autophagy defects occurring in salivary glands. Our findings provide a proof-of-concept that targeting autophagy might represent a promising therapeutic strategy for treating patients with Sjögren's syndrome.


Asunto(s)
Autofagia , Fragmentos de Péptidos/uso terapéutico , Glándulas Salivales/fisiología , Síndrome de Sjögren/terapia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr
10.
J Autoimmun ; 92: 114-125, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884340

RESUMEN

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disease of the peripheral nerves evolving with diffuse sensory and motor symptoms. Although it is claimed that in neurodegenerative pathologies, a common feature is the failure of proteolytic systems to adequately eliminate aggregated or misfolded proteins, it has not been addressed whether autophagy, a central "clearance" system delivering damaged intracellular components to lysosomes, is affected in CIDP. The focus of the present investigation was therefore to determine if some defects exist in autophagy processes in this setting and if they can be corrected or minimized using an appropriate treatment targeting this survival pathway. Experiments were performed using a rat model mimicking human CIDP, also known as chronic experimental autoimmune neuritis (c-EAN), the disease establishment and development of which was followed at both the clinical and biological levels (indices of disease severity, histopathological alteration, cytokines and antibodies rates). Based on immunofluorescence and western immunoblotting experiments on sciatic nerves and spleen cells from c-EAN rats, we demonstrate that both, macroautophagy and chaperone-mediated autophagy (CMA), are significantly altered in non-neuronal cells of the peripheral nervous system. We show further that a 21-mer synthetic phosphopeptide called P140, known to target CMA and successfully used in pathological settings where CMA markers are overexpressed, considerably ameliorates the clinical and biological course of the disease in c-EAN rats. P140 displayed prophylactic and therapeutic effects, both in terms of disease intensity and chronicity, and preserved sciatic nerves from disease-related damages. Our findings uncover new disrupted molecular pathways in a c-EAN model and provide a proof-of-concept that targeting CMA might represent a promising therapeutic strategy for treating inflammatory neuropathies for which no disease-specific treatment is currently available.


Asunto(s)
Productos Biológicos/uso terapéutico , Neuritis Autoinmune Experimental/terapia , Fragmentos de Péptidos/uso terapéutico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/terapia , Nervio Ciático/fisiología , Animales , Autofagia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Masculino , Actividad Motora , Deficiencias en la Proteostasis , Ratas , Ratas Endogámicas Lew , Nervio Ciático/efectos de los fármacos
11.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428632

RESUMEN

It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Vasculitis por Lupus del Sistema Nervioso Central/inmunología , Vasculitis por Lupus del Sistema Nervioso Central/metabolismo , Imagen por Resonancia Magnética
12.
J Biol Chem ; 291(17): 9073-86, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26841869

RESUMEN

B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.


Asunto(s)
Autoanticuerpos/inmunología , Subgrupos de Linfocitos B/inmunología , Células de la Médula Ósea/inmunología , Factor de Transcripción Ikaros/inmunología , Inmunoglobulina M/inmunología , Células Precursoras de Linfocitos B/inmunología , Animales , Factor de Transcripción Ikaros/genética , Ratones , Ratones Noqueados , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
13.
Angiogenesis ; 19(1): 39-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26419779

RESUMEN

OBJECTIVES: Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA). METHODS: Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and anti-VEGF Abs neutralizing capacity were determined. RESULTS: Both VEGF-K and Vpep1-K significantly ameliorated clinical arthritis scores and reduced synovial inflammation and joint destruction at histology. VEGF-K significantly reduced synovial vascularization. None of the vaccines reduced anti-collagen Ab response in mice. Both VEGF-K and Vpep1-K induced persistently high titers of anti-VEGF Abs capable of inhibiting VEGF-A bioactivity. CONCLUSION: Vaccination against the pro-angiogenic factor VEGF-A leads to the production of anti-VEGF polyclonal Abs and has a significant anti-inflammatory effect in CIA. Restraining Ab response to a single peptide sequence (Vpep1) with a peptide vaccine effectively protects immunized mice from joint inflammation and destruction.


Asunto(s)
Artritis Experimental/inmunología , Inflamación/patología , Articulaciones/patología , Terapia Molecular Dirigida , Vacunas/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos/inmunología , Artritis Experimental/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunidad Humoral/inmunología , Inmunización , Masculino , Ratones , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Membrana Sinovial/irrigación sanguínea , Membrana Sinovial/patología , Factor A de Crecimiento Endotelial Vascular/química
14.
J Autoimmun ; 74: 13-26, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27137989

RESUMEN

Depicting the cellular and molecular bases of the continuous dialogue existing between the peripheral immune and the central nervous systems, as in neurolupus, is fundamental to improve, and better apprehend the role played by immune cells and mediators in the initiation and progression of neurological and psychiatric diseases, which nowadays remain a major public health issue. The relative frequency of neurological symptoms occurring in systemic autoimmunity is particularly worrying as, for example, two-thirds of patients with lupus will eventually experience the disabling effects of neuropsychiatric lupus. Neurolupus is a particularly severe form of lupus with wide-ranging symptoms, which contribute to increased mortality and morbidity in patients. In this context, infections, which suddenly trigger exacerbations of the otherwise mild lupus disease, may drive the progression of neuroinflammation and neurodegeneration via different mechanisms involving a network of effector molecules and cells. The complex interaction of neuroimmunology and neuroinfectiology represents a genuine challenge for basic scientists and clinicians to understand the mechanisms that are implicated, and identify possible biomarkers of severity that might predict the development of this devastating form of lupus. The ultimate goal is to design appropriate, personalised therapeutic strategies to improve the outcome of the disease.


Asunto(s)
Autoinmunidad , Vasculitis por Lupus del Sistema Nervioso Central/etiología , Vasculitis por Lupus del Sistema Nervioso Central/psicología , Neuroinmunomodulación , Animales , Biomarcadores , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Vasculitis por Lupus del Sistema Nervioso Central/patología , Vasculitis por Lupus del Sistema Nervioso Central/terapia , Problema de Conducta , Transducción de Señal
15.
Biochim Biophys Acta ; 1842(7): 916-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24631654

RESUMEN

Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction. In this study we focus on a specific murine model of lupus, the MRL/lpr strain, and investigated the role of cyclic guanosine monophosphate (cGMP) catabolism in organ remodeling of main target tissues (kidney, spleen and liver) in comparison with age-matched control mice. In MRL/lpr-prone mice, the cGMP-phosphodiesterase (PDE) activities were significantly increased in the kidney (3-fold, P<0.001), spleen (2-fold, P<0.001) and liver (1.6-fold, P<0.05). These raised activity levels were paralleled by both an increased activity of PDE1 in the kidney (associated with nephromegaly) and in the liver, and PDE2 in the spleen of lupus-prone mice. The up-regulation of PDE1 and PDE2 activities were associated with a decrease in intracellular cGMP levels. This underlines an alteration of cGMP-PDE signaling in the kidney, spleen and liver targeting different PDEs according to organs. In good agreement with these findings, a single intravenous administration to MRL/lpr mice of nimodipine (PDE1 inhibitor) but not of EHNA (PDE2 inhibitor) was able to significantly lower peripheral hypercellularity (P=0.0401), a characteristic feature of this strain of lupus-prone mice. Collectively, our findings are important for generating personalized strategies to prevent certain forms of the lupus disease as well as for understanding the role of PDEs and cGMP in the pathophysiology of lupus.


Asunto(s)
GMP Cíclico/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Animales , Femenino , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Endogámicos CBA , Ratones Endogámicos MRL lpr , Regulación hacia Arriba
16.
FASEB J ; 28(7): 2840-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24671707

RESUMEN

Autoantibodies to nuclear antigens arise in human autoimmune diseases, but a unifying pathogenetic mechanism remains elusive. Recently we reported that exposure of neutrophils to inflammatory conditions induces the citrullination of core histones by peptidylarginine deiminase 4 (PAD4) and that patients with autoimmune disorders produce autoantibodies that recognize such citrullinated histones. Here we identify histone H1 as an additional substrate of PAD4, localize H1 within neutrophil extracellular traps, and detect autoantibodies to citrullinated H1 in 6% of sera from patients with systemic lupus erythematosus and Sjögren's syndrome. No preference for deiminated H1 was observed in healthy control sera and sera from patients with scleroderma or rheumatoid arthritis. We map binding to the winged helix of H1 and determine that citrulline 53 represents a key determinant of the autoantibody epitope. In addition, we quantitate RNA for H1 histone subtypes in mature human neutrophils and identify citrulline residues by liquid chromatography and tandem mass spectrometry. Our results indicate that deimination of linker histones generates new autoantibody epitopes with enhanced potential for stimulating autoreactive human B cells.-Dwivedi, N., Neeli, I., Schall, N., Wan, H., Desiderio, D. M., Csernok, E., Thompson, P. R., Dali, H., Briand, J.-P., Muller, S., Radic, M. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity.


Asunto(s)
Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Histonas/inmunología , Neutrófilos/inmunología , Secuencia de Aminoácidos , Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Epítopos/inmunología , Humanos , Inmunoglobulina G/inmunología , Datos de Secuencia Molecular , Alineación de Secuencia
17.
Traffic ; 13(2): 257-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22023725

RESUMEN

The reorganization of nuclear structures is an important early feature of apoptosis and involves the activity of specific proteases and nucleases. Well-known is the condensation and fragmentation of chromatin; however, much less is understood about the mechanisms involved in the reorganization of structures from the interchromatin space, such as interchromatin granule clusters (IGCs). In this study, we show that the initial enlargement and rounding-up of IGCs correlate with a decrease in mRNA transcription and are caspase-independent, but involve protein phosphatases PP1/PP2A. Subsequently, multiple enlarged IGCs dissociate from chromatin and fuse into a single structure. The dissociation requires caspase activity and involves caspase-activated DNase (CAD). Apoptotic IMR-5 cells, lacking a proper processing of CAD, show multiple enlarged IGCs that remain linked with chromatin. Overexpression of CAD in IMR-5 cells results in the dissociation of IGCs from chromatin, but the fusion into a single structure remains disturbed. Nuclear matrix protein NuMA is reorganized in a caspase-dependent way around fused IGCs. In conclusion, we show here that the apoptotic rearrangement of IGCs, the nuclear matrix and chromatin are closely associated, occur in defined stages and depend on the activity of protein phosphatases, caspases and CAD.


Asunto(s)
Antígenos Nucleares/metabolismo , Apoptosis/fisiología , Caspasas/metabolismo , Desoxirribonucleasas/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína Fosfatasa 2/metabolismo , Ribonucleoproteínas/metabolismo , Empalmosomas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Inhibidores de Caspasas , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desoxirribonucleasas/genética , Humanos , Espacio Intranuclear/efectos de los fármacos , Espacio Intranuclear/metabolismo , Espacio Intranuclear/ultraestructura , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosforilación/efectos de los fármacos , Proteínas de Unión a Poli-ADP-Ribosa , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina , Estaurosporina/farmacología , Transfección , Proteínas Nucleares snRNP/metabolismo
18.
Trends Pharmacol Sci ; 45(1): 81-101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102020

RESUMEN

Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Autofagia , Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología
19.
Ann Rheum Dis ; 72(11): 1830-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23172751

RESUMEN

OBJECTIVES: To evaluate treatment with the peptide-based agent, Lupuzor, in a double-blind, randomised, placebo-controlled study of patients with systemic lupus erythematosus. METHODS: Patients who met ≥4 of the American College of Rheumatology criteria, had a score of ≥6 on the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and did not have an A score on the British Isles Lupus Assessment Group (BILAG)-2004 scale were eligible. 149 intention-to-treat (ITT) patients were randomly assigned to receive Lupuzor (200 µg) subcutaneously every 4 weeks (n=49; group 1) or every 2 weeks (n=51; group 2) or placebo (n=49; group 3) in addition to standard of care (SOC). A target population (136 ITT patients) consisting of patients having a clinical SLEDAI score ≥6 at week 0 was considered. The clinical SLEDAI score is the SLEDAI-2K score obtained by omitting low complement and increased DNA binding components. RESULTS: In the ITT overall population, 53.1% in group 1 (p=0.048), 45.1% in group 2 (p=0.18) and 36.2% in the placebo group achieved an SLE Responder Index (SRI) response at week 12. In the target population, the results were more impressive: 61.9% in group 1 (p=0.016), 48.0% in group 2 (p=0.18) and 38.6% in the placebo group achieved an SRI response at week 12. An interim analysis including 114 patients from the target population demonstrated an even better efficacy (according to SLEDAI score) in group 1 compared with placebo (67.6% vs 41.5% (p<0.025) at week 12 and 84.2% vs 45.8% (p<0.025) at week 24). The most common adverse event was a mild injection-site erythema. CONCLUSIONS: Lupuzor/200 µg given three times at 4-week intervals during 12 weeks in addition to SOC is efficacious and generally well tolerated.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
20.
Autoimmun Rev ; 22(6): 103315, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36924921

RESUMEN

The emergence of novel targeted therapies and the tools that increase the stability and delivery of drugs have greatly improved treatment outcomes in autoimmune diseases (ADs). Recently-developed strategies deplete specific deleterious T- and B-cell subsets, interrupt receptor-ligand interactions, and/or inhibit the secretion or activity of inflammatory mediators linked to tissue damage. Although generally efficient, these lines of intervention have limitations, with documented cases of drug-resistance and undesired side effects. They are also difficult to apply to non-organ-specific ADs, where the trigger and effector antigens are unknown and in which autoimmune activity is widely spread throughout the body. The potential of cellular modulators that act at a distance from the affected site, by abscopal effect, as described in the case of cancer radio- and immuno-therapy might be especially efficient in the context of ADs. Future research to discover small molecule- and peptide-based treatments will need to explore potential drugs with abscopal effects that could elicit potent immune tolerance and clinical quiescence to restore quality of life of affected patients.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Autoinmunidad , Calidad de Vida , Neoplasias/tratamiento farmacológico , Descubrimiento de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA