Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101625, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074430

RESUMEN

Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, ß-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in ß- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.


Asunto(s)
Herpesvirus Humano 3 , Membrana Nuclear , Proteínas Virales , Cristalografía por Rayos X , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Proteínas Virales/química , Proteínas Virales/genética , Liberación del Virus
2.
PLoS Pathog ; 17(8): e1009863, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370791

RESUMEN

Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV.


Asunto(s)
Adaptación Fisiológica , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Replicación Viral , Animales , Infecciones por Citomegalovirus/metabolismo , Humanos , Primates , Pliegue de Proteína , Estructura Terciaria de Proteína , Ratas , Especificidad de la Especie
3.
Nucleic Acids Res ; 48(6): 3366-3378, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32052019

RESUMEN

RNAs play major roles in the regulation of gene expression. Hence, designer RNA molecules are increasingly explored as regulatory switches in synthetic biology. Among these, the TetR-binding RNA aptamer was selected by its ability to compete with operator DNA for binding to the bacterial repressor TetR. A fortuitous finding was that induction of TetR by tetracycline abolishes both RNA aptamer and operator DNA binding in TetR. This enabled numerous applications exploiting both the specificity of the RNA aptamer and the efficient gene repressor properties of TetR. Here, we present the crystal structure of the TetR-RNA aptamer complex at 2.7 Å resolution together with a comprehensive characterization of the TetR-RNA aptamer versus TetR-operator DNA interaction using site-directed mutagenesis, size exclusion chromatography, electrophoretic mobility shift assays and isothermal titration calorimetry. The fold of the RNA aptamer bears no resemblance to regular B-DNA, and neither does the thermodynamic characterization of the complex formation reaction. Nevertheless, the functional aptamer-binding epitope of TetR is fully contained within its DNA-binding epitope. In the RNA aptamer complex, TetR adopts the well-characterized DNA-binding-competent conformation of TetR, thus revealing how the synthetic TetR-binding aptamer strikes the chords of the bimodal allosteric behaviour of TetR to function as a synthetic regulator.


Asunto(s)
Aptámeros de Nucleótidos/química , Proteínas de Unión al ADN/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Conformación Proteica , Aptámeros de Nucleótidos/genética , Cristalografía por Rayos X , ADN Forma B/química , ADN Forma B/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Regulación de la Expresión Génica/genética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Unión Proteica/genética , ARN/química , ARN/genética
4.
J Biol Chem ; 295(10): 3189-3201, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31980459

RESUMEN

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric basic structure of the nuclear egress complex (core NEC). These core NECs serve as a hexameric lattice-structured platform for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina- and membrane-rearranging functions (multicomponent NEC). Here, we report the X-ray structures of ß- and γ-herpesvirus core NECs obtained through an innovative recombinant expression strategy based on NEC-hook::NEC-groove protein fusion constructs. This approach yielded the first structure of γ-herpesviral core NEC, namely the 1.56 Å structure of Epstein-Barr virus (EBV) BFRF1-BFLF2, as well as an increased resolution 1.48 Å structure of human cytomegalovirus (HCMV) pUL50-pUL53. Detailed analysis of these structures revealed that the prominent hook segment is absolutely required for core NEC formation and contributes approximately 80% of the interaction surface of the globular domains of NEC proteins. Moreover, using HCMV::EBV hook domain swap constructs, computational prediction of the roles of individual hook residues for binding, and quantitative binding assays with synthetic peptides presenting the HCMV- and EBV-specific NEC hook sequences, we characterized the unique hook-into-groove NEC interaction at various levels. Although the overall physicochemical characteristics of the protein interfaces differ considerably in these ß- and γ-herpesvirus NECs, the binding free energy contributions of residues displayed from identical positions are similar. In summary, the results of our study reveal critical details of the molecular mechanism of herpesviral NEC interactions and highlight their potential as an antiviral drug target.


Asunto(s)
Betaherpesvirinae/metabolismo , Gammaherpesvirinae/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citomegalovirus/metabolismo , Células HeLa , Herpesvirus Humano 4/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Resonancia por Plasmón de Superficie , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(22): 5744-5749, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760101

RESUMEN

The allosteric interplay between distant functional sites present in a single protein provides for one of the most important regulatory mechanisms in biological systems. While the design of ligand-binding sites into proteins remains challenging, this holds even truer for the coupling of a newly engineered binding site to an allosteric mechanism that regulates the ligand affinity. Here it is shown how computational design algorithms enabled the introduction of doxycycline- and doxorubicin-binding sites into the serine proteinase inhibitor (serpin) family member α1-antichymotrypsin. Further engineering allowed exploitation of the proteinase-triggered serpin-typical S-to-R transition to modulate the ligand affinities. These design variants follow strategies observed in naturally occurring plasma globulins that allow for the targeted delivery of hormones in the blood. By analogy, we propose that the variants described in the present study could be further developed to allow for the delivery of the antibiotic doxycycline and the anticancer compound doxorubicin to tissues/locations that express specific proteinases, such as bacterial infection sites or tumor cells secreting matrix metalloproteinases.


Asunto(s)
Doxorrubicina/metabolismo , Doxiciclina/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes , Sitio Alostérico/genética , Doxorrubicina/química , Doxiciclina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa 1-Antiquimotripsina/química , alfa 1-Antiquimotripsina/genética , alfa 1-Antiquimotripsina/metabolismo
6.
Mol Microbiol ; 112(5): 1403-1422, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419359

RESUMEN

Salmonella invasion is mediated by a concerted action of the Salmonella pathogenicity island 4 (SPI4)-encoded type one secretion system (T1SS) and the SPI1-encoded type three secretion system (T3SS-1). The SPI4-encoded T1SS consists of five proteins (SiiABCDF) and secretes the giant adhesin SiiE. Here, we investigated structure-function relationships in SiiA, a non-canonical T1SS subunit. We show that SiiA consists of a membrane domain, an intrinsically disordered periplasmic linker region and a folded globular periplasmic domain (SiiA-PD). The crystal structure of SiiA-PD displays homology to that of MotB and other peptidoglycan (PG)-binding domains. SiiA-PD binds PG in vitro, albeit at an acidic pH, only. Mutation of Arg162 impedes PG binding of SiiA and reduces Salmonella invasion efficacy. SiiA forms a complex with SiiB at the inner membrane (IM), and the observed SiiA-MotB homology is paralleled by a predicted SiiB-MotA homology. We show that, similar to MotAB, SiiAB translocates protons across the IM. Mutating Asp13 in SiiA impairs proton translocation. Overall, SiiA shares numerous properties with MotB. However, MotAB uses the proton motif force (PMF) to energize the bacterial flagellum, it remains to be shown how usage of the PMF by SiiAB assists T1SS function and Salmonella invasion.


Asunto(s)
Elonguina/metabolismo , Infecciones por Salmonella/patología , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo I/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Relación Estructura-Actividad , Sistemas de Secreción Tipo III/metabolismo
7.
Protein Expr Purif ; 172: 105632, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32251835

RESUMEN

In humans, Salmonella enterica infections are responsible for a plethora of medical conditions. These include intestinal inflammation and typhoid fever. The initial contact between Salmonella and polarized epithelial cells is established by the SPI4-encoded type I secretion system (T1SS), which secretes SiiE, a giant non-fimbrial adhesin. We have recombinantly produced various domains of this T1SS from Salmonella enterica serovar Typhimurium in Escherichia coli for further experimental characterization. We purified three variants of SiiD, the periplasmic adapter protein spanning the space between the inner and outer membrane, two variants of the SiiE N-terminal region and the N-terminal domain of the SiiF ATP-binding cassette (ABC) transporter. In all three proteins, at least one variant yielded high amounts of pure soluble protein. Secondary structure content and cooperative unfolding were investigated by circular dichroism (CD) spectroscopy. Secondary structure contents were in good agreement with estimates derived from SiiD and SiiF homology models or, in case of the SiiE N-terminal region, a secondary structure prediction. For one SiiD variant, protein crystals could be obtained that diffracted X-rays to approximately 4 Å resolution.


Asunto(s)
Salmonella typhimurium/genética , Sistemas de Secreción Tipo I , Escherichia coli/genética , Escherichia coli/metabolismo , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sistemas de Secreción Tipo I/biosíntesis , Sistemas de Secreción Tipo I/química , Sistemas de Secreción Tipo I/genética , Sistemas de Secreción Tipo I/aislamiento & purificación
8.
J Struct Biol ; 207(2): 169-182, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103428

RESUMEN

The introduction of ligand-binding sites into proteins and the engineering of molecular allosteric coupling pathways are topical issues in protein design. Here, we show that these issues can be addressed concurrently, using the serpin human α1-antichymotrypsin (ACT) as a model. We have introduced up to 15 amino acid substitutions into ACT, converting it into a surrogate corticosteroid-binding globulin (CBG), thereby creating a new binding globulin (NewBG). Human CBG and ACT share 46% sequence identity, and CBG served as the blue-print for our design, which was guided by side-chain-packing calculations, ITC measurements and crystal structure determinations. Upon transfer of ligand-interacting residues from CBG to ACT and mutation of specific second shell residues, a NewBG variant was obtained, which binds cortisol with 1.5 µM affinity. This novel serpin (NewBG-III) binds cortisol with a 33-fold lower affinity than CBG, but shares a similar ligand-binding profile and binding mode when probed with different steroid ligands and site-directed mutagenesis. An additional substitution, i.e. A349R, created NewBG-III-allo, which introduced an allosteric coupling between ligand binding and the serpin-like S-to-R transition in ACT. In NewBG-III-allo, the proteinase-triggered S-to-R transition leads to a greater than 200-fold reduction in ligand affinity, and crystal structures suggest that this is mediated by the L55V and A349R substitutions. This reduction significantly exceeds the 10-fold reduction in binding affinity observed in human CBG.


Asunto(s)
Complejos Multiproteicos/química , Ingeniería de Proteínas , Transcortina/química , alfa 1-Antiquimotripsina/química , Sustitución de Aminoácidos/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Humanos , Hidrocortisona/química , Ligandos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Mutación/genética , Unión Proteica/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Transcortina/genética , Transcortina/ultraestructura , alfa 1-Antiquimotripsina/genética , alfa 1-Antiquimotripsina/ultraestructura
9.
PLoS Pathog ; 13(5): e1006418, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28558023

RESUMEN

The giant non-fimbrial adhesin SiiE of Salmonella enterica mediates the first contact to the apical site of epithelial cells and enables subsequent invasion. SiiE is a 595 kDa protein composed of 53 repetitive bacterial immunoglobulin (BIg) domains and the only known substrate of the SPI4-encoded type 1 secretion system (T1SS). The crystal structure of BIg50-52 of SiiE revealed two distinct Ca2+-binding sites per BIg domain formed by conserved aspartate or glutamate residues. In a mutational analysis Ca2+-binding sites were disrupted by aspartate to serine exchange at various positions in the BIg domains of SiiE. Amounts of secreted SiiE diminish with a decreasing number of intact Ca2+-binding sites. BIg domains of SiiE contain distinct Ca2+-binding sites, with type I sites being similar to other T1SS-secreted proteins and type II sites newly identified in SiiE. We functionally and structurally dissected the roles of type I and type II Ca2+-binding sites in SiiE, as well as the importance of Ca2+-binding sites in various positions of SiiE. Type I Ca2+-binding sites were critical for efficient secretion of SiiE and a decreasing number of type I sites correlated with reduced secretion. Type II sites were less important for secretion, stability and surface expression of SiiE, however integrity of type II sites in the C-terminal portion was required for the function of SiiE in mediating adhesion and invasion.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiología , Adhesinas Bacterianas/genética , Secuencias de Aminoácidos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Salmonella typhimurium/química , Salmonella typhimurium/genética
10.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27903803

RESUMEN

PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE: The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Inmunidad , Cuerpos de Inclusión Intranucleares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Línea Celular , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Estabilidad de Enzimas , Humanos , Mutación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
11.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27328359

RESUMEN

The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q-fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen-induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti-apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti-apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti-apoptotic activity and the ability to migrate into the nucleus. We identified Importin-α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin-α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin-α1 is crucial for nuclear localization of AnkG.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Proteínas Mitocondriales/metabolismo , Factores de Virulencia/metabolismo , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Línea Celular , Análisis Mutacional de ADN , Humanos , Unión Proteica , Factores de Virulencia/genética
12.
Rev Med Virol ; 27(4)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28664574

RESUMEN

BACKGROUND: Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. METHODS: A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. RESULTS: A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. CONCLUSIONS: Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules.


Asunto(s)
Cápside/metabolismo , Citomegalovirus/fisiología , Membrana Nuclear/metabolismo , Liberación del Virus , Animales , Transporte Biológico , Herpesvirus Humano 4/fisiología , Humanos , Ratones , Muromegalovirus/fisiología , Simplexvirus/fisiología
13.
J Virol ; 90(3): 1190-205, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26559840

RESUMEN

UNLABELLED: PML is the organizer of cellular structures termed nuclear domain 10 (ND10) or PML-nuclear bodies (PML-NBs) that act as key mediators of intrinsic immunity against human cytomegalovirus (HCMV) and other viruses. The antiviral function of ND10 is antagonized by viral regulatory proteins such as the immediate early protein IE1 of HCMV. IE1 interacts with PML through its globular core domain (IE1CORE) and induces ND10 disruption in order to initiate lytic HCMV infection. Here, we investigate the consequences of a point mutation (L174P) in IE1CORE, which was shown to abrogate the interaction with PML, for lytic HCMV infection. We found that a recombinant HCMV encoding IE1-L174P displays a severe growth defect similar to that of an IE1 deletion virus. Bioinformatic modeling based on the crystal structure of IE1CORE suggested that insertion of proline into the highly alpha-helical domain severely affects its structural integrity. Consistently, L174P mutation abrogates the functionality of IE1CORE and results in degradation of the IE1 protein during infection. In addition, our data provide evidence that IE1CORE as expressed by a recombinant HCMV encoding IE1 1-382 not only is required to antagonize PML-mediated intrinsic immunity but also affects a recently described function of PML in innate immune signaling. We demonstrate a coregulatory role of PML in type I and type II interferon-induced gene expression and provide evidence that upregulation of interferon-induced genes is inhibited by IE1CORE. In conclusion, our data suggest that targeting PML by viral regulatory proteins represents a strategy to antagonize both intrinsic and innate immune mechanisms. IMPORTANCE: PML nuclear bodies (PML-NBs), which represent nuclear multiprotein complexes consisting of PML and additional proteins, represent important cellular structures that mediate intrinsic resistance against many viruses, including human cytomegalovirus (HCMV). During HCMV infection, the major immediate early protein IE1 binds to PML via a central globular domain (IE1CORE), and we have shown previously that this is sufficient to antagonize intrinsic immunity. Here, we demonstrate that modification of PML by IE1CORE not only abrogates intrinsic defense mechanisms but also attenuates the interferon response during infection. Our data show that PML plays a novel coregulatory role in type I as well as type II interferon-induced gene expression, which is antagonized by IE1CORE. Importantly, our finding supports the view that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to inhibit both intrinsic and innate immune defense mechanisms.


Asunto(s)
Citomegalovirus/inmunología , Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad Innata , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Biología Computacional , Citomegalovirus/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Proteína de la Leucemia Promielocítica , Conformación Proteica , Eliminación de Secuencia
14.
Nucleic Acids Res ; 43(2): 1283-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25564531

RESUMEN

The uptake and metabolism of N-acetylglucosamine (GlcNAc) in Bacillus subtilis is controlled by NagR (formerly named YvoA), a member of the widely-occurring GntR/HutC family of transcription regulators. Upon binding to specific DNA operator sites (dre-sites) NagR blocks the transcription of genes for GlcNAc utilization and interaction of NagR with effectors abrogates gene repression. Here we report crystal structures of NagR in complex with operator DNA and in complex with the putative effector molecules glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). A comparison of the distinct conformational states suggests that effectors are able to displace the NagR-DNA-binding domains (NagR-DBDs) by almost 70 Å upon binding. In addition, a high-resolution crystal structure of isolated NagR-DBDs in complex with palindromic double-stranded DNA (dsDNA) discloses both the determinants for highly sequence-specific operator dre-site recognition and for the unspecific binding of NagR to dsDNA. Extensive biochemical binding studies investigating the affinities of full-length NagR and isolated NagR-DBDs for either random DNA, dre-site-derived palindromic or naturally occurring non-palindromic dre-site sequences suggest that proper NagR function relies on an effector-induced fine-tuning of the DNA-binding affinities of NagR and not on a complete abrogation of its DNA binding.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/química , Regiones Operadoras Genéticas , Proteínas Represoras/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Glucosamina/análogos & derivados , Glucosamina/química , Glucosa-6-Fosfato/análogos & derivados , Glucosa-6-Fosfato/química , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo
15.
J Biol Chem ; 290(46): 27452-8, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26432641

RESUMEN

Nuclear replication of cytomegalovirus relies on elaborate mechanisms of nucleocytoplasmic egress of viral particles. Thus, the role of two essential and conserved viral nuclear egress proteins, pUL50 and pUL53, is pivotal. pUL50 and pUL53 heterodimerize and form a core nuclear egress complex (NEC), which is anchored to the inner nuclear membrane and provides a scaffold for the assembly of a multimeric viral-cellular NEC. Here, we report the crystal structure of the pUL50-pUL53 heterodimer (amino acids 1-175 and 50-292, respectively) at 2.44 Å resolution. Both proteins adopt a globular fold with mixed α and ß secondary structure elements. pUL53-specific features include a zinc-binding site and a hook-like N-terminal extension, the latter representing a hallmark element of the pUL50-pUL53 interaction. The hook-like extension (amino acids 59-87) embraces pUL50 and contributes 1510 Å(2) to the total interface area (1880 Å(2)). The pUL50 structure overall resembles the recently published NMR structure of the murine cytomegalovirus homolog pM50 but reveals a considerable repositioning of the very C-terminal α-helix of pUL50 upon pUL53 binding. pUL53 shows structural resemblance with the GHKL domain of bacterial sensory histidine kinases. A close examination of the crystal structure indicates partial assembly of pUL50-pUL53 heterodimers to hexameric ring-like structures possibly providing additional scaffolding opportunities for NEC. In combination, the structural information on pUL50-pUL53 considerably improves our understanding of the mechanism of HCMV nuclear egress. It may also accelerate the validation of the NEC as a unique target for developing a novel type of antiviral drug and improved options of broad-spectrum antiherpesviral therapy.


Asunto(s)
Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Proteínas Virales/química , Liberación del Virus , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Cristalografía por Rayos X , Citomegalovirus/efectos de los fármacos , Diseño de Fármacos , Humanos , Membrana Nuclear/virología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/metabolismo , Virión/efectos de los fármacos , Virión/fisiología , Replicación Viral
16.
PLoS Pathog ; 10(11): e1004512, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25412268

RESUMEN

PML nuclear bodies (PML-NBs) are enigmatic structures of the cell nucleus that act as key mediators of intrinsic immunity against viral pathogens. PML itself is a member of the E3-ligase TRIM family of proteins that regulates a variety of innate immune signaling pathways. Consequently, viruses have evolved effector proteins to modify PML-NBs; however, little is known concerning structure-function relationships of viral antagonists. The herpesvirus human cytomegalovirus (HCMV) expresses the abundant immediate-early protein IE1 that colocalizes with PML-NBs and induces their dispersal, which correlates with the antagonization of NB-mediated intrinsic immunity. Here, we delineate the molecular basis for this antagonization by presenting the first crystal structure for the evolutionary conserved primate cytomegalovirus IE1 proteins. We show that IE1 consists of a globular core (IE1CORE) flanked by intrinsically disordered regions. The 2.3 Å crystal structure of IE1CORE displays an all α-helical, femur-shaped fold, which lacks overall fold similarity with known protein structures, but shares secondary structure features recently observed in the coiled-coil domain of TRIM proteins. Yeast two-hybrid and coimmunoprecipitation experiments demonstrate that IE1CORE binds efficiently to the TRIM family member PML, and is able to induce PML deSUMOylation. Intriguingly, this results in the release of NB-associated proteins into the nucleoplasm, but not of PML itself. Importantly, we show that PML deSUMOylation by IE1CORE is sufficient to antagonize PML-NB-instituted intrinsic immunity. Moreover, co-immunoprecipitation experiments demonstrate that IE1CORE binds via the coiled-coil domain to PML and also interacts with TRIM5α We propose that IE1CORE sequesters PML and possibly other TRIM family members via structural mimicry using an extended binding surface formed by the coiled-coil region. This mode of interaction might render the antagonizing activity less susceptible to mutational escape.


Asunto(s)
Proteínas Portadoras/metabolismo , Citomegalovirus/química , Citomegalovirus/metabolismo , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Factores de Restricción Antivirales , Proteínas Portadoras/genética , Línea Celular , Cristalografía por Rayos X , Citomegalovirus/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/virología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
17.
PLoS Pathog ; 10(10): e1004377, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25299639

RESUMEN

Human cytomegalovirus (HCMV) infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citomegalovirus , Proteínas del Envoltorio Viral/química , Sustitución de Aminoácidos/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/química , Citomegalovirus/genética , Infecciones por Citomegalovirus/diagnóstico , Humanos , Proteínas del Envoltorio Viral/genética
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1493-504, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26143921

RESUMEN

Cytomegalovirus immediate-early 1 (IE1) protein is a key viral effector protein that reprograms host cells. Controlled dehydration experiments with IE1 crystals not only extended their diffraction limit from 2.85 to 2.3 Šresolution but also triggered a monoclinic to tetragonal space-group transition with only minor alterations in the unit-cell parameters. An analysis of the pre-dehydration and post-dehydration crystal structures shows how dehydration rearranges the packing of IE1 molecules to meet the unit-cell constraints of the higher lattice symmetry. The transition from P21 to P43 reduces the number of copies in the asymmetric unit from four to two, and molecules previously related by noncrystallographic symmetry merge into identical crystallographic copies in the tetragonal space group. At the same time, dehydration considerably alters the tertiary structure of one of the two remaining IE1 chains in the asymmetric unit. It appears that this conformational switch is required to compensate for a transition that is assumed to be unfavourable, namely from a highly preferred to a rarely observed space group. At the same time, the dehydration-triggered molecular reshaping could reveal an inherent molecular flexibility that possibly informs on the biological function of IE1, namely on its binding to target proteins from the host cell.


Asunto(s)
Citomegalovirus/química , Proteínas Inmediatas-Precoces/química , Macaca mulatta/virología , Animales , Cristalización/instrumentación , Cristalografía por Rayos X/instrumentación , Deshidratación , Humedad , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
19.
Biochem Biophys Res Commun ; 464(1): 324-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26123391

RESUMEN

The global transcriptional regulator DasR connects N-acetylglucosamine (GlcNAc) utilization to the onset of morphological and chemical differentiation in the model actinomycete Streptomyces coelicolor. Previous work revealed that glucosamine-6-phosphate (GlcN-6P) acts as an allosteric effector which disables binding by DasR to its operator sites (called dre, for DasR responsive element) and allows derepression of DasR-controlled/GlcNAc-dependent genes. To unveil the mechanism by which DasR controls S. coelicolor development, we performed a series of electromobility shift assays with histidine-tagged DasR protein, which suggested that N-acetylglucosamine-6-phosphate (GlcNAc-6P) could also inhibit the formation of DasR-dre complexes and perhaps even more efficiently than GlcN-6P. The possibility that GlcNAc-6P is indeed an efficient allosteric effector of DasR was further confirmed by the high and constitutive activity of the DasR-repressed nagKA promoter in the nagA mutant, which lacks GlcNAc-6P deaminase activity and therefore accumulates GlcNAc-6P. In addition, we also observed that high concentrations of organic or inorganic phosphate enhanced binding of DasR to its recognition site, suggesting that the metabolic status of the cell could determine the selectivity of DasR in vivo, and hence its effect on the expression of its regulon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Streptomyces coelicolor/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Regulón , Proteínas Represoras/genética , Streptomyces coelicolor/genética , Transcripción Genética
20.
Proc Natl Acad Sci U S A ; 108(23): 9613-8, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606363

RESUMEN

Protection of the endothelium is provided by circulating sphingosine-1-phosphate (S1P), which maintains vascular integrity. We show that HDL-associated S1P is bound specifically to both human and murine apolipoprotein M (apoM). Thus, isolated human ApoM(+) HDL contained S1P, whereas ApoM(-) HDL did not. Moreover, HDL in Apom(-/-) mice contains no S1P, whereas HDL in transgenic mice overexpressing human apoM has an increased S1P content. The 1.7-Å structure of the S1P-human apoM complex reveals that S1P interacts specifically with an amphiphilic pocket in the lipocalin fold of apoM. Human ApoM(+) HDL induced S1P(1) receptor internalization, downstream MAPK and Akt activation, endothelial cell migration, and formation of endothelial adherens junctions, whereas apoM(-) HDL did not. Importantly, lack of S1P in the HDL fraction of Apom(-/-) mice decreased basal endothelial barrier function in lung tissue. Our results demonstrate that apoM, by delivering S1P to the S1P(1) receptor on endothelial cells, is a vasculoprotective constituent of HDL.


Asunto(s)
Apolipoproteínas/metabolismo , Endotelio Vascular/metabolismo , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Apolipoproteínas/química , Apolipoproteínas/genética , Apolipoproteínas M , Western Blotting , Células Cultivadas , Cristalografía por Rayos X , Endocitosis , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Activación Enzimática , Células HEK293 , Humanos , Lipocalinas/química , Lipocalinas/genética , Lipocalinas/metabolismo , Lipoproteínas HDL/química , Lisofosfolípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/química , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA