Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 146(5): 1409-1420, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31702822

RESUMEN

Therapeutic success of targeted therapy with BRAF inhibitors (BRAFi) for melanoma is limited by resistance development. Observations from preclinical mouse models and recent insights into the immunological effects caused by BRAFi give promise for future development of combination therapy for human melanoma. In our study, we used the transplantable D4M melanoma mouse model with the BRAFV600E mutation and concomitant PTEN loss in order to characterize alterations in tumor-infiltrating effector immune cells when tumors become resistant to BRAFi. We found that BRAFi-sensitive tumors displayed a pronounced inflammatory milieu characterized by high levels of cytokines and chemokines accompanied by an infiltration of T and NK cells. The tumor-infiltrating effector cells were activated and produced high levels of IFN-γ, TNF-α and granzyme B. When tumors became resistant and progressively grew, they reverted to a low immunogenic state similar to untreated tumors as reflected by low mRNA levels of proinflammatory cytokines and chemokines and fewer tumor-infiltrating T and NK cells. Moreover, these T and NK cells were functionally impaired in comparison to their counterparts in BRAFi-sensitive tumors. Their effector cell function could be restored by additional peritumoral treatment with the TLR7 agonist imiquimod, a clinically approved agent for nonmelanoma skin cancer. Indeed, resistance to BRAFi therapy was delayed and accompanied by high numbers of activated T and NK cells in tumors. Thus, combining BRAFi with an immune stimulating agent such as a TLR ligand could be a promising alternative approach for the treatment of melanoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral/trasplante , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Imiquimod/farmacología , Imiquimod/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Ratones , Mutación , Células T Asesinas Naturales , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/metabolismo
2.
Cancer Immunol Immunother ; 67(11): 1731-1742, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30167860

RESUMEN

ß-Glucan is a naturally occurring glucose polysaccharide with immunostimulatory activity in both infection and malignancy. ß-Glucan's antitumor effects have been attributed to the enhancement of complement receptor 3-dependent cellular cytotoxicity, as well as modulation of suppressive and stimulatory myeloid subsets, which in turn enhances antitumor T cell immunity. In the present study, we demonstrate antitumor efficacy of yeast-derived ß-glucan particles (YGP) in a model of metastatic-like melanoma in the lung, through a mechanism that is independent of previously reported ß-glucan-mediated antitumor pathways. Notably, efficacy is independent of adaptive immunity, but requires inflammatory monocytes. YGP-activated monocytes mediated direct cytotoxicity against tumor cells in vitro, and systemic YGP treatment upregulated inflammatory mediators, including TNFα, M-CSF, and CCL2, in the lungs. Collectively, these studies identify a novel role for inflammatory monocytes in ß-glucan-mediated antitumor efficacy, and expand the understanding of how this immunomodulator can be used to generate beneficial immune responses against metastatic disease.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Mediadores de Inflamación/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Monocitos/inmunología , Receptores CCR2/fisiología , beta-Glucanos/farmacología , Inmunidad Adaptativa/inmunología , Adyuvantes Inmunológicos , Animales , Mediadores de Inflamación/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Linfocitos T/inmunología , Células Tumorales Cultivadas
3.
Med Educ ; 57(11): 1126, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37718250
4.
Immunology ; 150(1): 25-34, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27564847

RESUMEN

The role of the immune system in shaping cancer development and patient prognosis has recently become an area of intense focus in industry and academia. Harnessing the adaptive arm of the immune system for tumour eradication has shown great promise in a variety of tumour types. Differences between tissues, however, necessitate a greater understanding of the adaptive immunity programmes that are active within each tumour type. In breast cancer, adaptive immune programmes play diverse roles depending on the cellular infiltration found in each tumour. Cytotoxic T lymphocytes and T helper type 1 cells can induce tumour eradication, whereas regulatory T cells and T helper type 2 cells are known to be involved in tumour-promoting immunosuppressive responses. Complicating these matters, heterogeneous expression of hormone receptors and growth factors in different tumours leads to disparate, patient-specific adaptive immune responses. Despite this non-conformity in adaptive immune behaviours, encouraging basic and clinical results have been observed that suggest a role for immunotherapeutic approaches in breast cancer. Here, we review the literature pertaining to the adaptive immune response in breast cancer, summarize the primary findings relating to the breast tumour's biology, and discuss potential clinical immunotherapies.


Asunto(s)
Inmunidad Adaptativa , Neoplasias de la Mama/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Animales , Femenino , Humanos
5.
Cancer Immunol Immunother ; 65(10): 1189-99, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27522581

RESUMEN

INTRODUCTION: Optimal approaches to induce T cell infiltration of tumors are not known. Chemokines CXCL9, CXCL10, and CXCL11 support effector T cell recruitment and may be induced by IFN. This study tests the hypothesis that intratumoral administration of IFNγ will induce CXCL9-11 and will induce T cell recruitment and anti-tumor immune signatures in melanoma metastases. PATIENTS AND METHODS: Nine eligible patients were immunized with a vaccine comprised of 12 class I MHC-restricted melanoma peptides and received IFNγ intratumorally. Effects on the tumor microenvironment were evaluated in sequential tumor biopsies. Adverse events (AEs) were recorded. T cell responses to vaccination were assessed in PBMC by IFNγ ELISPOT assay. Tumor biopsies were evaluated for immune cell infiltration, chemokine protein expression, and gene expression. RESULTS: Vaccination and intratumoral administration of IFNγ were well tolerated. Circulating T cell responses to vaccine were detected in six of nine patients. IFNγ increased production of chemokines CXCL10, CXCL11, and CCL5 in patient tumors. Neither vaccination alone, nor the addition of IFNγ promoted immune cell infiltration or induced anti-tumor immune gene signatures. CONCLUSION: The melanoma vaccine induced circulating T cell responses, but it failed to infiltrate metastases, thus highlighting the need for combination strategies to support T cell infiltration. A single intratumoral injection of IFNγ induced T cell-attracting chemokines; however, it also induced secondary immune regulation that may paradoxically limit immune infiltration and effector functions. Alternate dosing strategies or additional combinatorial treatments may be needed to promote trafficking and retention of tumor-reactive T cells in melanoma metastases.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Interferón gamma/uso terapéutico , Melanoma/terapia , Linfocitos T/inmunología , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/inmunología , Movimiento Celular , Células Cultivadas , Ensayo de Immunospot Ligado a Enzimas , Femenino , Estudios de Seguimiento , Humanos , Linfocitos Infiltrantes de Tumor/patología , Masculino , Melanoma/mortalidad , Melanoma/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Fragmentos de Péptidos/inmunología , Análisis de Supervivencia , Vacunas de Subunidad/inmunología
6.
Cancer Immunol Immunother ; 65(10): 1201-12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27522582

RESUMEN

INTRODUCTION: Infiltration of cancers by T cells is associated with improved patient survival and response to immune therapies; however, optimal approaches to induce T cell infiltration of tumors are not known. This study was designed to assess whether topical treatment of melanoma metastases with the TLR7 agonist imiquimod plus administration of a multipeptide cancer vaccine will improve immune cell infiltration of melanoma metastases. PATIENTS AND METHODS: Eligible patients were immunized with a vaccine comprised of 12 melanoma peptides and a tetanus toxoid-derived helper peptide, and imiquimod was applied topically to metastatic tumors daily. Adverse events were recorded, and effects on the tumor microenvironment were evaluated from sequential tumor biopsies. T cell responses were assessed by IFNγ ELIspot assay and T cell tetramer staining. Patient tumors were evaluated for immune cell infiltration, cytokine and chemokine production, and gene expression. RESULTS AND CONCLUSIONS: Four eligible patients were enrolled, and administration of imiquimod and vaccination were well tolerated. Circulating T cell responses to the vaccine was detected by ex vivo ELIspot assay in 3 of 4 patients. Treatment of metastases with imiquimod induced immune cell infiltration and favorable gene signatures in the patients with circulating T cell responses. This study supports further study of topical imiquimod combined with vaccines or other immune therapies for the treatment of melanoma.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antígenos de Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Vacunas contra el Cáncer/inmunología , Melanoma/terapia , Fragmentos de Péptidos/inmunología , Neoplasias Cutáneas/terapia , Linfocitos T/efectos de los fármacos , Administración Tópica , Anciano , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Terapia Combinada , Citocinas/genética , Citocinas/metabolismo , Ensayo de Immunospot Ligado a Enzimas , Femenino , Humanos , Imiquimod , Linfocitos Infiltrantes de Tumor/patología , Masculino , Melanoma/secundario , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Cutáneas/secundario , Linfocitos T/inmunología , Receptor Toll-Like 7/agonistas , Transcriptoma/inmunología , Vacunas de Subunidad/inmunología
7.
J Immunol ; 190(1): 469-78, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23225891

RESUMEN

Immune recognition of tumors can limit cancer development, but antitumor immune responses are often blocked by tumor-mediated immunosuppression. Because microbes or microbial constituents are powerful adjuvants to stimulate immune responses, we evaluated whether intratumoral administration of a highly immunogenic but attenuated parasite could induce rejection of an established poorly immunogenic tumor. We treated intradermal B16F10 murine melanoma by intratumoral injection of an attenuated strain of Toxoplasma gondii (cps) that cannot replicate in vivo and therefore is not infective. The cps treatment stimulated a strong CD8(+) T cell-mediated antitumor immune response in vivo that regressed established primary melanoma. The cps monotherapy rapidly modified the tumor microenvironment, halting tumor growth, and subsequently, as tumor-reactive T cells expanded, the tumors disappeared and rarely returned. The treatment required live cps that could invade cells and also required CD8(+) T cells and NK cells, but did not require CD4(+) T cells. Furthermore, we demonstrate that IL-12, IFN-γ, and the CXCR3-stimulating cytokines are required for full treatment efficacy. The treatment developed systemic antitumor immune activity as well as antitumor immune memory and therefore might have an impact against human metastatic disease. The approach is not specific for either B16F10 or melanoma. Direct intratumoral injection of cps has efficacy against an inducible genetic melanoma model and transplantable lung and ovarian tumors, demonstrating potential for broad clinical use. The combination of efficacy, systemic antitumor immune response, and complete attenuation with no observed host toxicity demonstrates the potential value of this novel cancer therapy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Melanoma Experimental/inmunología , Neoplasias Cutáneas/inmunología , Toxoplasma/inmunología , Adyuvantes Inmunológicos/uso terapéutico , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Inyecciones Intradérmicas , Melanoma Experimental/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Cutáneas/prevención & control , Escape del Tumor/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
8.
J Cell Physiol ; 228(4): 773-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23001823

RESUMEN

We used vertical growth phase (VGP) human VMM5 melanoma cells to ask whether the tumor microenvironment could induce matrix metalloproteinase-1 (MMP-1) in vivo, and whether this induction correlated with metastasis. We isolated two clones from parental VMM5 cells: a low MMP-1 producing clone (C4) and high producing clone (C9). When these clones were injected orthotopically (intradermally) into nude mice, both were equally tumorigenic and produced equivalent and abundant amounts of MMP-1. However, the tumors from the C4 clones displayed different growth kinetics and distinct profiles of gene expression from the C9 population. The C4 tumors, which had low MMP-1 levels in vitro, appeared to rely on growth factors and cytokines in the microenvironment to increase MMP-1 expression in vivo, while MMP-1 levels remained constant in the C9 tumors. C9 cells, but not C4 cells, grew as spheres in culture and expressed higher levels of JARID 1B, a marker associated with melanoma initiating cells. We conclude that VMM5 melanoma cells exhibit striking intra-tumor heterogeneity, and that the tumorigenicity of these clones is driven by different molecular pathways. Our data suggest that there are multiple mechanisms for melanoma progression within a tumor, which may require different therapeutic strategies.


Asunto(s)
Melanoma/patología , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/patología , Animales , Células Clonales , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , ARN Mensajero/genética , Células Tumorales Cultivadas , Microambiente Tumoral/genética
9.
J Biol Chem ; 286(12): 10847-55, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21282107

RESUMEN

Hepatitis C virus (HCV) infection is highly efficient in the establishment of persistent infection, which leads to the development of chronic liver disease and hepatocellular carcinoma. Impaired T cell responses with reduced IFN-γ production have been reported to be associated with persistent HCV infection. Extracellular HCV core is a viral factor known to cause HCV-induced T cell impairment via its suppressive effect on the activation and induction of pro-inflammatory responses by antigen-presenting cells (APCs). The activation of STAT proteins has been reported to regulate the inflammatory responses and differentiation of APCs. To further characterize the molecular basis for the regulation of APC function by extracellular HCV core, we examined the ability of extracellular HCV core to activate STAT family members (STAT1, -2, -3, -5, and -6). In this study, we report the activation of STAT3 on human monocytes, macrophages, and dendritic cells following treatment with extracellular HCV core as well as treatment with a gC1qR agonistic monoclonal antibody. Importantly, HCV core-induced STAT3 activation is dependent on the activation of the PI3K/Akt pathway. In addition, the production of multifunctional cytokine IL-6 is essential for HCV core-induced STAT3 activation. These results suggest that HCV core-induced STAT3 activation plays a critical role in the alteration of inflammatory responses by APCs, leading to impaired anti-viral T cell responses during HCV infection.


Asunto(s)
Comunicación Autocrina/fisiología , Células Dendríticas/metabolismo , Hepacivirus/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas del Núcleo Viral/metabolismo , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Comunicación Autocrina/efectos de los fármacos , Células Cultivadas , Células Dendríticas/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Hepatitis C/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-6/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/farmacología
10.
J Immunol ; 185(10): 6115-27, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952680

RESUMEN

The importance of regulatory T cells (Tregs) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. In this article, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP-1) as an endogenous brake and modifier of the suppressive ability of Tregs; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Tregs to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate potently augmented Treg suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Tregs prevent the activation of conventional T cells and that SHP-1-deficient Tregs are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg function and a potential therapeutic target for augmenting Treg-mediated suppression in certain disease states.


Asunto(s)
Tolerancia Inmunológica/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Citometría de Flujo , Immunoblotting , Inmunoprecipitación , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
11.
Front Cell Infect Microbiol ; 12: 979701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225230

RESUMEN

Pseudomembranous candidiasis (thrush), erythematous candidiasis, and fungal esophagitis are infections of the barrier mucosa of the upper gastrointestinal tract. The majority of these infections are caused by Candida albicans, an opportunistic fungal pathogen that frequently exists as a harmless commensal on mucosal surfaces lining the gastrointestinal tract. Oral infections are initiated in the superficial stratified squamous epithelium, in which keratinocytes are the most abundant host cells and are the initial points of contact with C. albicans present in saliva. Intrinsic features of oral keratinocytes are likely to play important roles in host defense and tissue homeostasis in oral candidiasis. One understudied pathway that may be important for modulating oral candidiasis is the IL-20 cytokine signaling pathway that employs keratinocyte IL-20RB receptors as ligands for IL-19, IL-20, and IL-24. We report that production of human oral keratinocyte il24 mRNA and protein are stimulated during co-culture with C. albicans. To test the role of the IL-20 family signaling pathway in oral candidiasis, Il20rb-/- mice (lacking the IL-20RB receptor) were compared to wild-type mice in a murine model of oropharyngeal candidiasis. Fungal burdens and percent loss in body weight were determined. Despite comparable fungal burdens, the Il20rb-/- mice exhibited less weight loss over the course of their infection compared to the B6 mice, suggestive of reduced overall disease consequences in the mutant mice. Interference with IL-20 family cytokine signaling may be useful for augmenting the ability of the host to defend itself against pathogens.


Asunto(s)
Candidiasis Bucal , Candidiasis , Receptores de Interleucina/metabolismo , Animales , Candida albicans/genética , Candidiasis/microbiología , Humanos , Interleucina-17/metabolismo , Interleucinas , Ligandos , Ratones , Mucosa Bucal/microbiología , ARN Mensajero/metabolismo , Transducción de Señal
12.
Sci Transl Med ; 13(581)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597266

RESUMEN

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Animales , Antígenos de Neoplasias , Epítopos , Humanos , Melanocitos , Melanoma/terapia , Ratones
13.
J Exp Med ; 198(7): 1023-34, 2003 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-14530375

RESUMEN

We have established that the route of immunization with peptide-pulsed, activated DC leads to memory CD8+ T cells with distinct distributions in lymphoid tissues, which determines the ability to control tumors growing in different body sites. Both intravenous (i.v.) and subcutaneous (s.c.) immunization induced memory T cells in spleen and control of metastatic-like lung tumors. s.c. immunization also induced memory T cells in lymph nodes (LNs), imparting protection against subcutaneously growing tumors. In contrast, i.v. immunization-induced memory was restricted to spleen and failed to impart protective immunity against subcutaneously growing tumors. Memory cell distribution and tumor control were both linked to injection route-dependent localization of DCs in lymphoid compartments. Using peripheral LN-ablated mice, these LNs were shown to be essential for control of subcutaneously growing tumors but not lung metastases; in contrast, using immunized asplenic mice, we found that the spleen is necessary and sufficient for control of lung tumors, but unnecessary for control of subcutaneously growing tumors. These data demonstrate the existence of a previously undescribed population of splenic-resident memory CD8 T cells that are essential for the control of lung metastases. Thus, regional immunity based on memory T cell residence patterns is an important factor in DC-based tumor immunotherapy.


Asunto(s)
Células Dendríticas/inmunología , Memoria Inmunológica , Ganglios Linfáticos/inmunología , Neoplasias Experimentales/terapia , Linfocitos T/inmunología , Vacunación/métodos , Animales , Inyecciones Intravenosas , Inyecciones Subcutáneas , Neoplasias Pulmonares/secundario , Melanoma Experimental/terapia , Ratones , Neoplasias Cutáneas/terapia
14.
Sci Rep ; 10(1): 5901, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246043

RESUMEN

Recent developments in understanding how the functional phenotype of the innate immune system is programmed has led to paradigm-shifting views on immunomodulation. These advances have overturned two long-held dogmas: (1) only adaptive immunity confers immunological memory; and, (2) innate immunity lacks specificity. This work describes the observation that innate immune effector cells appear to be differentially recruited to specific pathological sites when mobilized by distinct inactivated bacterial-based stimuli administered subcutaneously. The studies presented suggest that the immune system, upon detecting the first signs of a potential infection by a specific pathogen, tends to direct its resources to the compartment from which that pathogen is most likely originating. The findings from this work puts forth the novel hypothesis that the immunotherapeutic efficacy of a microbial-based stimulus for innate immune mobilization depends on the correct selection of the microbial species used as the stimulant and its relationship to the organ in which the pathology is present.


Asunto(s)
Vacunas Bacterianas/inmunología , Vacunas contra el Cáncer/inmunología , Inmunidad Innata , Inmunoterapia/métodos , Neoplasias/terapia , Inmunidad Adaptativa , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunogenicidad Vacunal , Memoria Inmunológica , Inyecciones Subcutáneas , Ratones , Neoplasias/inmunología , Resultado del Tratamiento , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
15.
Nat Commun ; 10(1): 2230, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110180

RESUMEN

LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy.


Asunto(s)
Interferones/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma/patología , Proteínas/metabolismo , Neoplasias Cutáneas/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Interferones/inmunología , Melanoma/inmunología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Factor de Transcripción STAT1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Front Med (Lausanne) ; 6: 170, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31380382

RESUMEN

Background: Current Crohn's disease (CD) therapies focus on suppressing immune function and come with consequent risk, such as infection and cancer. Notwithstanding, most CD patients still experience disease progression. There is a need for new CD treatment strategies that offer better health outcomes for patients. Aims: To assess safety, efficacy, and tolerability of a novel microbial-derived immunotherapy, QBECO, that aims to restore rather than suppress immune function in CD. Methods: A randomized, double-blind, placebo-controlled trial was conducted in 68 patients with moderate-to-severe CD. Primary endpoints: safety and Week 8 clinical improvement. Secondary endpoints: Week 8 clinical response and remission. Week 8 responders continued blinded treatment through Week 16; non-responders received open-label QBECO from Weeks 9-16. Exploratory analyses included immune biomarker and genotype assessments. Results: QBECO was well-tolerated. Mean reduction in Crohn's Disease Activity Index (CDAI) score was -68 for QBECO vs. -31 for placebo at Week 8. Improvement with QBECO continued through Week 16 (-130 CDAI reduction). Week 8 QBECO clinical response, improvement and remission rates were 41.2%, 32.4%, 29.4% vs. 26.5%, 23.5%, 23.5% for placebo. TNFα inhibitor-naïve subjects achieved higher response rates at Week 8 with QBECO (64%) vs. placebo (26%). Specific immune biomarkers were identified that linked to QBECO response. Conclusion: This proof-of-concept study supports further investigation for the use of QBECO as a novel immunotherapy approach for CD. Biomarker analyses suggests it may be feasible to personalize CD treatment with QBECO. Larger trials are now needed to confirm clinical improvement and the unique biological findings. Clinical Trial Number: NCT01809275 (https://clinicaltrials.gov/ct2/show/NCT01809275).

17.
Adv Immunol ; 90: 243-95, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16730266

RESUMEN

The development of effective immune therapy for cancer is a central goal of immunologists in the 21st century. Our laboratories have been deeply involved in characterization of the immune response to melanoma and translation of laboratory discoveries into clinical trials. We have identified a cohort of peptide antigens presented by Major Histocompatibility Complex (MHC) molecules on melanoma cells and widely recognized by T cells from melanoma patients. These have been incorporated into peptide-based vaccines that induce CD8(+) and CD4(+) T-cell responses in 80-100% of patients. Major objective clinical tumor regressions have been observed in some patients, and overall survival in vaccinated patients exceeds expected stage-specific survival. New clinical trials will determine the value of combination of melanoma helper peptides (MHP) into multipeptide vaccines targeting CD8 cells. New trials will also evaluate new approaches to modulating the host-tumor relationship and will develop new combination therapies. Parallel investigations in murine models are elucidating the immunobiology of the melanoma-host relationship and addressing issues that are not feasible to approach in human trials. Based on the fact that the largest cohort of melanoma antigens are derived from normal proteins concerned with pigment production, we have evaluated the mechanisms of self-tolerance to tyrosinase (Tyr) and have determined how T cells in an environment of self-tolerance are impacted by immunization. Using peptide-pulsed dendritic cells as immunogens, we have also used the mouse model to establish strategies for quantitative and qualitative enhancement of antitumor immunity. This information creates opportunities for a new generation of therapeutic interventions using cancer vaccines.


Asunto(s)
Antígenos de Neoplasias/administración & dosificación , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Inmunidad Celular/inmunología , Melanoma/inmunología , Melanoma/terapia , Autotolerancia/inmunología , Animales , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Humanos , Melanoma/patología , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/tendencias , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico
18.
Oncoimmunology ; 7(3): e1398875, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29399400

RESUMEN

Acute infection is known to induce strong anti-tumor immune responses, but clinical translation has been hindered by the lack of an effective strategy to safely and consistently provoke a therapeutic response. These limitations are overcome with a novel treatment approach involving repeated subcutaneous delivery of a Klebsiella-derived investigational immunotherapeutic, QBKPN. In preclinical models of lung cancer, QBKPN administration consistently showed anti-cancer efficacy, which was dependent on Klebsiella pre-exposure, but was independent of adaptive immunity. Rather, QBKPN induced anti-tumor innate immunity that required NK cells and NKG2D engagement. QBKPN increased NK cells and macrophages in the lungs, altered macrophage polarization, and augmented the production of cytotoxic molecules. An exploratory trial in patients with non-small cell lung cancer demonstrated QBKPN was well tolerated, safe, and induced peripheral immune changes suggestive of macrophage polarization and reduction of PD-1 and PD-L1 expression on leukocytes. These data demonstrate preclinical efficacy, and clinical safety and tolerability, for this cancer immunotherapy strategy that exploits innate anti-tumor immune mechanisms.

19.
Sci Rep ; 7: 45593, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358049

RESUMEN

We present a new foundational role for CXCR3+ monocytes/macrophages in the process of tumor engraftment in the lung. CXCR3 is associated with monocytic and lymphocytic infiltration of inflamed or tumor-bearing lung. Although the requirement for tumor-expressed CXCR3 in metastatic engraftment has been demonstrated, the role of monocyte-expressed CXCR3 had not been appreciated. In a murine model of metastatic-like melanoma, engraftment was coordinate with CXCR3+ monocyte/macrophage accumulation in the lungs and was sensitive to pharmacologic inhibition of CXCR3 signaling. Tumor engraftment to lung was impaired in CXCR3-/- mice, and transient reconstitution with circulating CXCR3-replete monocytes was sufficient to restore engraftment. These data illustrate the paradoxical pro-tumor role for CXCR3 in lung immunobiology wherein the CXCR3 axis drives both the anti-tumor effector cell chemoattraction and pro-tumor infiltration of the lungs and suggests a potential therapeutic target for lung-tropic metastasizing cancers.


Asunto(s)
Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Macrófagos/inmunología , Melanoma/patología , Monocitos/inmunología , Receptores CXCR3/inmunología , Animales , Línea Celular Tumoral , Melanoma/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia/inmunología , Receptores CXCR3/genética , Transducción de Señal
20.
Cancer Res ; 77(6): 1271-1282, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28126714

RESUMEN

With the recent advent of immunotherapy, there is a critical need to understand immune cell interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multidimensional datasets have enabled systematic approaches to dissect these interactions in large numbers of patients, furthering our understanding of the patient immune response to solid tumors. Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a coinfiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor microenvironment. By integrating patient mutation data, we found that while mutation burden was associated with immune infiltration differences between distinct tumor types, additional factors likely explained differences between tumors originating from the same tissue. We concluded this analysis by examining the prognostic value of individual immune cell subsets as well as how coinfiltration of functionally discordant cell types associated with patient survival. In multiple tumor types, we found that the protective effect of CD8+ T cell infiltration was heavily modulated by coinfiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-derived suppressor cells in tumor development. Our findings illustrate complex interactions between different immune cell types in the tumor microenvironment and indicate these interactions play meaningful roles in patient survival. These results demonstrate the importance of personalized immune response profiles when studying the factors underlying tumor immunogenicity and immunotherapy response. Cancer Res; 77(6); 1271-82. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/genética , Comunicación Celular/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Perfilación de la Expresión Génica , Humanos , Estadificación de Neoplasias , Neoplasias/genética , Neoplasias/patología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA