Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 160(2): 165-70, 2003 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-12527752

RESUMEN

Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.


Asunto(s)
Células Eucariotas/ultraestructura , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/ultraestructura , Transducción de Señal/fisiología , Proteínas ras/ultraestructura , Animales , Células Cultivadas , Colesterol/metabolismo , Células Eucariotas/metabolismo , Galectina 1/metabolismo , Genes ras/genética , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica , Proteínas Luminiscentes/ultraestructura , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Proteínas Recombinantes de Fusión/ultraestructura , Fracciones Subcelulares , Proteínas ras/metabolismo
2.
Mol Cell Biol ; 25(15): 6722-33, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16024806

RESUMEN

H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cholesterol-dependent and cholesterol-independent microdomains. In contrast, monopalmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-palmitate is weaker. Thus, membrane affinity of a palmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopalmitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.


Asunto(s)
Genes ras , Proteína Oncogénica p21(ras)/metabolismo , Ácidos Palmíticos/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Cricetinae , Cisteína/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Aparato de Golgi/metabolismo , Cinética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Proteína Oncogénica p21(ras)/genética , Células PC12 , Transporte de Proteínas/genética , Ratas , Serina/genética , Quinasas raf/metabolismo
3.
Mol Cell Biol ; 24(15): 6799-810, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15254246

RESUMEN

The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Cricetinae , Citosol/metabolismo , Inmunohistoquímica , Lípidos/química , Microdominios de Membrana/química , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Fracciones Subcelulares , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 102(43): 15500-5, 2005 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-16223883

RESUMEN

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximately 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximately 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.


Asunto(s)
Actinas/fisiología , Citoesqueleto/fisiología , Microdominios de Membrana/química , Proteínas de la Membrana/química , Proteínas ras/química , Animales , Células Cultivadas , Cricetinae , Modelos Teóricos
5.
J Biol Chem ; 278(26): 23738-46, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12692121

RESUMEN

The mechanisms involved in angiotensin II type 1 receptor (AT1-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT1-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT1-R in caveolae, AT1-R.caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT1-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT1-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT1-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT1-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT1-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT1-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT1-R through the exocytic pathway, but this does not result in AT1-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT1-R.


Asunto(s)
Caveolinas/metabolismo , Exocitosis , Receptores de Angiotensina/metabolismo , Animales , Caveolina 1 , Caveolina 3 , Caveolinas/genética , Línea Celular , Membrana Celular , Colesterol/farmacología , Humanos , Microdominios de Membrana , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Orgánulos/ultraestructura , Transporte de Proteínas , Receptor de Angiotensina Tipo 1 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA