Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Gynecol Cancer ; 31(5): 754-774, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33106272

RESUMEN

Metabolomics, the global analysis of metabolites in a biological specimen, could potentially provide a fast method of biomarker identification for ovarian cancer. This systematic review aims to examine findings from studies that apply metabolomics to the diagnosis, prognosis, treatment, and recurrence of ovarian cancer. A systematic search of English language publications was conducted on PubMed, Science Direct, and SciFinder. It was augmented by a snowball strategy, whereby further relevant studies are identified from reference lists of included studies. Studies in humans with ovarian cancer which focus on metabolomics of biofluids and tumor tissue were included. No restriction was placed on the time of publication. A separate review of targeted metabolomic studies was conducted for completion. Qualitative data were summarized in a comprehensive table. The studies were assessed for quality and risk of bias using the ROBINS-I tool. 32 global studies were included in the main systematic review. Most studies applied metabolomics to diagnosing ovarian cancer, within which the most frequently reported metabolite changes were a down-regulation of phospholipids and amino acids: histidine, citrulline, alanine, and methionine. Dysregulated phospholipid metabolism was also reported in the separately reviewed 18 targeted studies. Generally, combinations of more than one significant metabolite as a panel, in different studies, achieved a higher sensitivity and specificity for diagnosis than a single metabolite; for example, combinations of different phospholipids. Widespread metabolite differences were observed in studies examining prognosis, treatment, and recurrence, and limited conclusions could be drawn. Cellular processes of proliferation and invasion may be reflected in metabolic changes present in poor prognosis and recurrence. For example, lower levels of lysine, with increased cell invasion as an underlying mechanism, or glutamine dependency of rapidly proliferating cancer cells. In conclusion, this review highlights potential metabolites and biochemical pathways which may aid the clinical care of ovarian cancer if further validated.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario/diagnóstico , Neoplasias Ováricas/diagnóstico , Carcinoma Epitelial de Ovario/patología , Regulación hacia Abajo , Femenino , Humanos , Metabolómica/métodos , Estudios Observacionales como Asunto , Neoplasias Ováricas/patología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA