Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(11): 996-1005, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37992230

RESUMEN

ABSTRACT: Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Melfalán/farmacología , Inestabilidad Genómica , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Blood ; 143(10): 895-911, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890146

RESUMEN

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Asunto(s)
Antineoplásicos , Antígenos CD8 , Células Madre Pluripotentes Inducidas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno de Maduración de Linfocitos B/metabolismo , Linfocitos T Citotóxicos , Antineoplásicos/metabolismo
3.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38551812

RESUMEN

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/inmunología , Mieloma Múltiple/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Calreticulina/metabolismo , Calreticulina/genética , Muerte Celular Inmunogénica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Autofagia/efectos de los fármacos
4.
Blood ; 142(4): 313-324, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37196627

RESUMEN

In a short time, single-cell platforms have become the norm in many fields of research, including multiple myeloma (MM). In fact, the large amount of cellular heterogeneity in MM makes single-cell platforms particularly attractive because bulk assessments can miss valuable information about cellular subpopulations and cell-to-cell interactions. The decreasing cost and increasing accessibility of single-cell platform, combined with breakthroughs in obtaining multiomics data for the same cell and innovative computational programs for analyzing data, have allowed single-cell studies to make important insights into MM pathogenesis; yet, there is still much to be done. In this review, we will first focus on the types of single-cell profiling and the considerations for designing a single-cell profiling experiment. Then, we will discuss what have learned from single-cell profiling about myeloma clonal evolution, transcriptional reprogramming, and drug resistance, and about the MM microenvironment during precursor and advanced disease.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/metabolismo , Comunicación Celular , Evolución Clonal , Análisis de la Célula Individual , Microambiente Tumoral
5.
Blood ; 141(21): 2599-2614, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630605

RESUMEN

PSMD4/Rpn10 is a subunit of the 19S proteasome unit that is involved with feeding target proteins into the catalytic machinery of the 26S proteasome. Because proteasome inhibition is a common therapeutic strategy in multiple myeloma (MM), we investigated Rpn10 and found that it is highly expressed in MM cells compared with normal plasma cells. Rpn10 levels inversely correlated with overall survival in patients with MM. Inducible knockout or knockdown of Rpn10 decreased MM cell viability both in vitro and in vivo by triggering the accumulation of polyubiquitinated proteins, cell cycle arrest, and apoptosis associated with the activation of caspases and unfolded protein response-related pathways. Proteomic analysis revealed that inhibiting Rpn10 increased autophagy, antigen presentation, and the activation of CD4+ T and natural killer cells. We developed an in vitro AlphaScreen binding assay for high-throughput screening and identified a novel Rpn10 inhibitor, SB699551 (SB). Treating MM cell lines, leukemic cell lines, and primary cells from patients with MM with SB decreased cell viability without affecting the viability of normal peripheral blood mononuclear cells. SB inhibited the proliferation of MM cells even in the presence of the tumor-promoting bone marrow milieu and overcame proteasome inhibitor (PI) resistance without blocking the 20S proteasome catalytic function or the 19S deubiquitinating activity. Rpn10 blockade by SB triggered MM cell death via similar pathways as the genetic strategy. In MM xenograft models, SB was well tolerated, inhibited tumor growth, and prolonged survival. Our data suggest that inhibiting Rpn10 will enhance cytotoxicity and overcome PI resistance in MM, providing the basis for further optimization studies of Rpn10 inhibitors for clinical application.


Asunto(s)
Mieloma Múltiple , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Proteómica , Leucocitos Mononucleares/metabolismo , Proteínas Portadoras/genética , Proteínas/metabolismo , Proteínas de Unión al ARN
6.
Blood ; 141(14): 1724-1736, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36603186

RESUMEN

High-dose melphalan (HDM) improves progression-free survival in multiple myeloma (MM), yet melphalan is a DNA-damaging alkylating agent; therefore, we assessed its mutational effect on surviving myeloma cells by analyzing paired MM samples collected at diagnosis and relapse in the IFM 2009 study. We performed deep whole-genome sequencing on samples from 68 patients, 43 of whom were treated with RVD (lenalidomide, bortezomib, and dexamethasone) and 25 with RVD + HDM. Although the number of mutations was similar at diagnosis in both groups (7137 vs 7230; P = .67), the HDM group had significantly more mutations at relapse (9242 vs 13 383, P = .005). No change in the frequency of copy number alterations or structural variants was observed. The newly acquired mutations were typically associated with DNA damage and double-stranded breaks and were predominantly on the transcribed strand. A machine learning model, using this unique pattern, predicted patients who would receive HDM with high sensitivity, specificity, and positive prediction value. Clonal evolution analysis showed that all patients treated with HDM had clonal selection, whereas a static progression was observed with RVD. A significantly higher percentage of mutations were subclonal in the HDM cohort. Intriguingly, patients treated with HDM who achieved complete remission (CR) had significantly more mutations at relapse yet had similar survival rates as those treated with RVD who achieved CR. This similarity could have been due to HDM relapse samples having significantly more neoantigens. Overall, our study identifies increased genomic changes associated with HDM and provides rationale to further understand clonal complexity.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/diagnóstico , Melfalán/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Bortezomib/uso terapéutico , Lenalidomida/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Enfermedad Crónica , Trasplante Autólogo , Dexametasona/uso terapéutico
7.
Blood ; 141(23): 2841-2852, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36877894

RESUMEN

Therapeutic targeting of CDK7 has proven beneficial in preclinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in cells from patients with multiple myeloma (MM); its selective targeting counteracts E2F activity via perturbation of the cyclin-dependent kinases/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small-molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression, increasing survival in several mouse models of MM including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.


Asunto(s)
Quinasa Activadora de Quinasas Ciclina-Dependientes , Mieloma Múltiple , Animales , Ratones , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Mieloma Múltiple/genética
8.
Blood ; 141(4): 391-405, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36126301

RESUMEN

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Asunto(s)
MicroARNs , Mieloma Múltiple , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Mieloma Múltiple/genética , Cromatina , MicroARNs/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
9.
N Engl J Med ; 384(8): 705-716, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33626253

RESUMEN

BACKGROUND: Idecabtagene vicleucel (ide-cel, also called bb2121), a B-cell maturation antigen-directed chimeric antigen receptor (CAR) T-cell therapy, has shown clinical activity with expected CAR T-cell toxic effects in patients with relapsed and refractory multiple myeloma. METHODS: In this phase 2 study, we sought to confirm the efficacy and safety of ide-cel in patients with relapsed and refractory myeloma. Patients with disease after at least three previous regimens including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody were enrolled. Patients received ide-cel target doses of 150 × 106 to 450 × 106 CAR-positive (CAR+) T cells. The primary end point was an overall response (partial response or better); a key secondary end point was a complete response or better (comprising complete and stringent complete responses). RESULTS: Of 140 patients enrolled, 128 received ide-cel. At a median follow-up of 13.3 months, 94 of 128 patients (73%) had a response, and 42 of 128 (33%) had a complete response or better. Minimal residual disease (MRD)-negative status (<10-5 nucleated cells) was confirmed in 33 patients, representing 26% of all 128 patients who were treated and 79% of the 42 patients who had a complete response or better. The median progression-free survival was 8.8 months (95% confidence interval, 5.6 to 11.6). Common toxic effects among the 128 treated patients included neutropenia in 117 patients (91%), anemia in 89 (70%), and thrombocytopenia in 81 (63%). Cytokine release syndrome was reported in 107 patients (84%), including 7 (5%) who had events of grade 3 or higher. Neurotoxic effects developed in 23 patients (18%) and were of grade 3 in 4 patients (3%); no neurotoxic effects higher than grade 3 occurred. Cellular kinetic analysis confirmed CAR+ T cells in 29 of 49 patients (59%) at 6 months and 4 of 11 patients (36%) at 12 months after infusion. CONCLUSIONS: Ide-cel induced responses in a majority of heavily pretreated patients with refractory and relapsed myeloma; MRD-negative status was achieved in 26% of treated patients. Almost all patients had grade 3 or 4 toxic effects, most commonly hematologic toxic effects and cytokine release syndrome. (Funded by bluebird bio and Celgene, a Bristol-Myers Squibb company; KarMMa ClinicalTrials.gov number, NCT03361748.).


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Adulto , Anciano , Biomarcadores/sangre , Síndrome de Liberación de Citoquinas/etiología , Resistencia a Antineoplásicos , Femenino , Enfermedades Hematológicas/inducido químicamente , Humanos , Inmunoterapia Adoptiva/efectos adversos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/inmunología , Supervivencia sin Progresión , Recurrencia
10.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178737

RESUMEN

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Asunto(s)
Adenocarcinoma , Resistencia a Antineoplásicos , Masculino , Animales , Ratones , Humanos , Resistencia a Antineoplásicos/genética , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Recombinación Homóloga , Ciclo Celular , Inestabilidad Genómica , Genómica , Inestabilidad Cromosómica/genética , Desoxirribonucleasas/genética , Evolución Molecular
11.
Haematologica ; 109(1): 231-244, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439377

RESUMEN

DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Centrosoma/metabolismo , Centrosoma/patología , Mitosis , Ciclo Celular/genética , Inestabilidad Genómica , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo
12.
Blood ; 137(1): 16-19, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33024991

RESUMEN

Although therapeutic strategies have been adapted to age and comorbidities for a long time, almost all multiple myeloma (MM) patients currently receive similar treatment, whatever their disease risk category. However, high-risk MM patients still constitute an unmet medical need and should benefit from the most efficient drug combinations. Herein, we review and discuss how to optimally define risk and why a revision of the current definition is urgently needed.


Asunto(s)
Mieloma Múltiple/genética , Humanos , Factores de Riesgo
13.
Blood ; 138(20): 1980-1985, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792571

RESUMEN

Immunoglobulin M (IgM) multiple myeloma (MM) is a rare disease subgroup. Its differentiation from other IgM-producing gammopathies such as Waldenström macroglobulinemia (WM) has not been well characterized but is essential for proper risk assessment and treatment. In this study, we investigated genomic and transcriptomic characteristics of IgM-MM samples using whole-genome and transcriptome sequencing to identify differentiating characteristics from non-IgM-MM and WM. Our results suggest that IgM-MM shares most of its defining structural variants and gene-expression profiling with MM, but has some key characteristics, including t(11;14) translocation, chromosome 6 and 13 deletion as well as distinct molecular and transcription-factor signatures. Furthermore, IgM-MM translocations were predominantly characterized by VHDHJH recombination-induced breakpoints, as opposed to the usual class-switching region breakpoints; coupled with its lack of class switching, these data favor a pre-germinal center origin. Finally, we found elevated expression of clinically relevant targets, including CD20 and Bruton tyrosine kinase, as well as high BCL2/BCL2L1 ratio in IgM-MM, providing potential for targeted therapeutics.


Asunto(s)
Inmunoglobulina M/genética , Mieloma Múltiple/genética , Transcriptoma , Macroglobulinemia de Waldenström/genética , Variaciones en el Número de Copia de ADN , Centro Germinal/metabolismo , Humanos , Mieloma Múltiple/diagnóstico , Mutación , Translocación Genética , Macroglobulinemia de Waldenström/diagnóstico
14.
Blood ; 138(20): 1966-1979, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34132782

RESUMEN

Activating mutations in MYD88 promote malignant cell growth and survival through hematopoietic cell kinase (HCK)-mediated activation of Bruton tyrosine kinase (BTK). Ibrutinib binds to BTKCys481 and is active in B-cell malignancies driven by mutated MYD88. Mutations in BTKCys481, particularly BTKCys481Ser, are common in patients with acquired ibrutinib resistance. We therefore performed an extensive medicinal chemistry campaign and identified KIN-8194 as a novel dual inhibitor of HCK and BTK. KIN-8194 showed potent and selective in vitro killing of MYD88-mutated lymphoma cells, including ibrutinib-resistant BTKCys481Ser-expressing cells. KIN-8194 demonstrated excellent bioavailability and pharmacokinetic parameters, with good tolerance in rodent models at pharmacologically achievable and active doses. Pharmacodynamic studies showed sustained inhibition of HCK and BTK for 24 hours after single oral administration of KIN-8194 in an MYD88-mutated TMD-8 activated B-cell diffuse large B-cell lymphoma (ABC DLBCL) and BCWM.1 Waldenström macroglobulinemia (WM) xenografted mice with wild-type BTK (BTKWT)- or BTKCys481Ser-expressing tumors. KIN-8194 showed superior survival benefit over ibrutinib in both BTKWT- and BTKCys481Ser-expressing TMD-8 DLBCL xenografted mice, including sustained complete responses of >12 weeks off treatment in mice with BTKWT-expressing TMD-8 tumors. The BCL_2 inhibitor venetoclax enhanced the antitumor activity of KIN-8194 in BTKWT- and BTKCys481Ser-expressing MYD88-mutated lymphoma cells and markedly reduced tumor growth and prolonged survival in mice with BTKCys481Ser-expressing TMD-8 tumors treated with both drugs. The findings highlight the feasibility of targeting HCK, a key driver of mutated MYD88 pro-survival signaling, and provide a framework for the advancement of KIN-8194 for human studies in B-cell malignancies driven by HCK and BTK.


Asunto(s)
Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma/tratamiento farmacológico , Factor 88 de Diferenciación Mieloide/genética , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Adenina/farmacología , Adenina/uso terapéutico , Agammaglobulinemia Tirosina Quinasa/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Linfoma/genética , Ratones Endogámicos NOD , Ratones SCID , Mutación/efectos de los fármacos , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
15.
Blood ; 137(14): 1905-1919, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33751108

RESUMEN

Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the most common genetic alterations in mature B-cell malignancies, which originate from germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting important tumor-suppressor activity. However, the role of miR-15a/16-1 in B-cell activation and initiation of mature B-cell neoplasms remains to be determined. We show that conditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but widespread molecular and functional changes including an increased number of GC B cells, percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to development of mature B-cell neoplasms resembling human extramedullary plasmacytoma (EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of bone marrow involvement of EP in our murine model resembles human primary EP rather than MM that has progressed to extramedullary disease. We corroborate human primary EP having low levels of miR-15a/16 expression, with del(13q) being the most common genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation. Taken together, our studies highlight the significant role of the miR-15a/16-1 cluster in the regulation of the GC reaction and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies.


Asunto(s)
Linfoma de Células B Grandes Difuso/genética , MicroARNs/genética , Neoplasias de Células Plasmáticas/genética , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 13/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/patología , Ratones Endogámicos C57BL , Familia de Multigenes , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Neoplasias de Células Plasmáticas/patología , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Plasmacitoma/genética , Plasmacitoma/patología
16.
Pharmacoepidemiol Drug Saf ; 32(5): 558-566, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36458420

RESUMEN

BACKGROUND: We aimed to evaluate and compare the performance of multiple myeloma (MM) selection algorithms for use in Veterans Affairs (VA) research. METHODS: Using the VA Corporate Data Warehouse (CDW), the VA Cancer Registry (VACR), and VA pharmacy data, we randomly selected 500 patients from 01/01/1999 to 06/01/2021 who had (1) either one MM diagnostic code OR were listed in the VACR as having MM AND (2) at least one MM treatment code. A team reviewed oncology notes for each veteran to annotate details regarding MM diagnosis and initial treatment within VA. We evaluated inter-annotator agreement and compared the performance of four published algorithms (two developed and validated external to VA data and two used in VA data). RESULTS: A total of 859 patients were reviewed to obtain 500 patients who were annotated as having MM and initiating MM treatment in VA. Agreement was high among annotators for all variables: MM diagnosis (98.3% agreement, Kappa = 0.93); initial treatment in VA (91.8% agreement; Kappa = 0.77); and initial treatment classification (87.6% agreement; Kappa = 0.86). VA Algorithms were more specific and had higher PPVs than non-VA algorithms for both MM diagnosis and initial treatment in VA. We developed the "VA Recommended Algorithm," which had the highest PPV among all algorithms in identifying patients diagnosed with MM (PPV = 0.98, 95% CI = 0.95-0.99) and in identifying patients who initiated their MM treatment in VA (PPV = 0.93, 95% CI = 0.90-0.96). CONCLUSION: Our VA Recommended Algorithm optimizes sensitivity and PPV for cohort selection and treatment classification.


Asunto(s)
Mieloma Múltiple , Veteranos , Humanos , Estados Unidos/epidemiología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/epidemiología , United States Department of Veterans Affairs , Algoritmos , Atención a la Salud
17.
Cancer ; 128(10): 1996-2004, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167125

RESUMEN

BACKGROUND: Multiple myeloma (MM) is an incurable hematologic malignancy requiring long-term, continuous therapy. Despite its chronic and unrelenting course, studies examining quality of life (QOL), psychological distress, and perceptions of prognosis by line of therapy are lacking. METHODS: The authors conducted a cross-sectional, multisite study of patients undergoing treatment for MM (excluding maintenance) between June 2020 and January 2021. The authors conducted purposeful sampling and recruited patients to 3 cohorts based on lines of therapy: 1) newly diagnosed receiving first-line therapy; 2) 2 to 3 lines; and 3) 4 or more lines. Patients completed validated questionnaires to assess their QOL, fatigue, psychological distress, and perceptions of prognosis. RESULTS: A total of 180 patients with MM were enrolled (newly diagnosed [n = 60], 2 to 3 lines [n = 60], and ≥4 lines of therapy [n = 60]). QOL, symptom burden, and fatigue scores did not differ by lines of therapy. There were no statistically significant differences in psychological distress by line of therapy. The rates of clinically significant depression, anxiety, and post-traumatic stress disorder symptoms were 23.9% (43 of 180), 23.9% (43 of 180), and 24.4% (44 of 180), respectively. Most patients (84.7%, 149 of 176) reported that their oncologist told them their cancer was incurable, but only 30.6% (53 of 173) acknowledged that they were terminally ill, and 42.0% (73 of 174) reported that they thought their cancer was incurable. CONCLUSIONS: Patients with MM undergoing treatment experience impaired QOL and elevated psychological distress across the disease continuum, regardless of line of therapy. A substantial proportion of patients with MM have significant misperceptions about their prognosis and the curability of their illness despite reporting being informed of the prognosis by their oncologist. LAY SUMMARY: This study discusses 180 patients with MM (newly diagnosed [n = 60], 2-3 lines [n = 60], and ≥4 lines of therapy [n = 60]). Quality of life, symptom burden, and fatigue scores do not differ by lines of therapy. There are also no statistically significant differences in psychological distress by line of therapy. The rates of clinically significant depression, anxiety, and post-traumatic stress disorder symptoms are 23.9%, 23.9%, and 24.4%, respectively. Most patients (84.7%) report that their oncologist told them their cancer was incurable, but only 30.6% acknowledge that they are terminally ill, and 42.0% report that they thought their cancer was incurable.


Asunto(s)
Mieloma Múltiple , Distrés Psicológico , Estudios Transversales , Fatiga/epidemiología , Fatiga/etiología , Fatiga/psicología , Humanos , Mieloma Múltiple/epidemiología , Mieloma Múltiple/terapia , Pronóstico , Calidad de Vida/psicología , Estrés Psicológico/epidemiología , Estrés Psicológico/etiología , Estrés Psicológico/psicología
18.
Lancet ; 398(10297): 314-324, 2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34175021

RESUMEN

BACKGROUND: CARTITUDE-1 aimed to assess the safety and clinical activity of ciltacabtagene autoleucel (cilta-cel), a chimeric antigen receptor T-cell therapy with two B-cell maturation antigen-targeting single-domain antibodies, in patients with relapsed or refractory multiple myeloma with poor prognosis. METHODS: This single-arm, open-label, phase 1b/2 study done at 16 centres in the USA enrolled patients aged 18 years or older with a diagnosis of multiple myeloma and an Eastern Cooperative Oncology Group performance status score of 0 or 1, who received 3 or more previous lines of therapy or were double-refractory to a proteasome inhibitor and an immunomodulatory drug, and had received a proteasome inhibitor, immunomodulatory drug, and anti-CD38 antibody. A single cilta-cel infusion (target dose 0·75 × 106 CAR-positive viable T cells per kg) was administered 5-7 days after start of lymphodepletion. The primary endpoints were safety and confirmation of the recommended phase 2 dose (phase 1b), and overall response rate (phase 2) in all patients who received treatment. Key secondary endpoints were duration of response and progression-free survival. This trial is registered with ClinicalTrials.gov, NCT03548207. FINDINGS: Between July 16, 2018, and Oct 7, 2019, 113 patients were enrolled. 97 patients (29 in phase 1b and 68 in phase 2) received a cilta-cel infusion at the recommended phase 2 dose of 0·75 × 106 CAR-positive viable T cells per kg. As of the Sept 1, 2020 clinical cutoff, median follow-up was 12·4 months (IQR 10·6-15·2). 97 patients with a median of six previous therapies received cilta-cel. Overall response rate was 97% (95% CI 91·2-99·4; 94 of 97 patients); 65 (67%) achieved stringent complete response; time to first response was 1 month (IQR 0·9-1·0). Responses deepened over time. Median duration of response was not reached (95% CI 15·9-not estimable), neither was progression-free survival (16·8-not estimable). The 12-month progression-free rate was 77% (95% CI 66·0-84·3) and overall survival rate was 89% (80·2-93·5). Haematological adverse events were common; grade 3-4 haematological adverse events were neutropenia (92 [95%] of 97 patients), anaemia (66 [68%]), leukopenia (59 [61%]), thrombocytopenia (58 [60%]), and lymphopenia (48 [50%]). Cytokine release syndrome occurred in 92 (95%) of 97 patients (4% were grade 3 or 4); with median time to onset of 7·0 days (IQR 5-8) and median duration of 4·0 days (IQR 3-6). Cytokine release syndrome resolved in all except one with grade 5 cytokine release syndrome and haemophagocytic lymphohistiocytosis. CAR T-cell neurotoxicity occurred in 20 (21%) patients (9% were grade 3 or 4). 14 deaths occurred in the study; six due to treatment-related adverse events, five due to progressive disease, and three due to treatment-unrelated adverse events. INTERPRETATION: A single cilta-cel infusion at the target dose of 0·75 × 106 CAR-positive viable T cells per kg led to early, deep, and durable responses in heavily pretreated patients with multiple myeloma with a manageable safety profile. The data from this study formed the basis for recent regulatory submissions. FUNDING: Janssen Research & Development and Legend Biotech.


Asunto(s)
Antígeno de Maduración de Linfocitos B/administración & dosificación , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/tratamiento farmacológico , Receptores Quiméricos de Antígenos/administración & dosificación , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estados Unidos
19.
Immunol Cell Biol ; 100(1): 21-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34219288

RESUMEN

The balance between T helper type 1 (Th1) and T helper type 2 (Th2) cells is critical for both innate and acquired immune reactions. However, the precise mechanisms of T helper-cell differentiation remain unclear. As an important T-cell activation molecule, CD44 participates in the differentiation of Th1 and Th2 cells. We demonstrated that CD44 variant exon v5 (CD44 v5) is highly expressed by induced human Th2 cells. To investigate the role of the CD44 v5 domain in Th2 cell differentiation, we treated human CD4+ T cells with anti-CD44v5 antibody and observed that the levels of phosphorylated STAT6 and GATA3 and the secretion of interleukin-4 (IL-4) were significantly decreased after the treatment. We also further found that the inhibition of Th2 differentiation was caused by the degradation of the alpha chain of IL-4 receptor (IL-4Rα), the CD44 v5 domain colocalized with IL-4Rα on cell surface and the degradation of IL-4Rα increased after CD44 v5 domain blocking or ablating. Our results indicated that CD44v5 antibody treatment interrupted the interaction between CD44 v5 domain and IL-4Rα, but the CD44 v5 domain blockage would not spoil the colocalization between IL-4R expression and T-cell receptor and the immunological synapse formation; similar results were also found in CD44v5-deficient CD4+ T cells. In conclusion, we revealed the function of the CD44 v5 domain in Th2 cell differentiation; blocking or ablating the CD44 v5 domain could accelerate IL-4Rα degradation and then induce the Th2 cell inhibition.


Asunto(s)
Receptores de Hialuranos/genética , Interleucina-4 , Receptores de Interleucina-4 , Células Th2 , Animales , Diferenciación Celular , Polaridad Celular , Humanos , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-4/metabolismo , Transducción de Señal , Células TH1
20.
Blood ; 136(26): 3033-3040, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33367546

RESUMEN

The primary cause of morbidity and mortality in patients with multiple myeloma (MM) is an infection. Therefore, there is great concern about susceptibility to the outcome of COVID-19-infected patients with MM. This retrospective study describes the baseline characteristics and outcome data of COVID-19 infection in 650 patients with plasma cell disorders, collected by the International Myeloma Society to understand the initial challenges faced by myeloma patients during the COVID-19 pandemic. Analyses were performed for hospitalized MM patients. Among hospitalized patients, the median age was 69 years, and nearly all patients (96%) had MM. Approximately 36% were recently diagnosed (2019-2020), and 54% of patients were receiving first-line therapy. Thirty-three percent of patients have died, with significant geographic variability, ranging from 27% to 57% of hospitalized patients. Univariate analysis identified age, International Staging System stage 3 (ISS3), high-risk disease, renal disease, suboptimal myeloma control (active or progressive disease), and 1 or more comorbidities as risk factors for higher rates of death. Neither history of transplant, including within a year of COVID-19 diagnosis, nor other anti-MM treatments were associated with outcomes. Multivariate analysis found that only age, high-risk MM, renal disease, and suboptimal MM control remained independent predictors of adverse outcome with COVID-19 infection. The management of MM in the era of COVID-19 requires careful consideration of patient- and disease-related factors to decrease the risk of acquiring COVID-19 infection, while not compromising disease control through appropriate MM treatment. This study provides initial data to develop recommendations for the management of MM patients with COVID-19 infection.


Asunto(s)
COVID-19/complicaciones , Internacionalidad , Mieloma Múltiple/complicaciones , Mieloma Múltiple/virología , SARS-CoV-2/fisiología , Sociedades Médicas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA