Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Respir Cell Mol Biol ; 58(5): 648-657, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29182484

RESUMEN

Pulmonary hypertension (PH) is a progressive disorder that causes significant morbidity and mortality despite existing therapies. PH pathogenesis is characterized by metabolic derangements that increase pulmonary artery smooth muscle cell (PASMC) proliferation and vascular remodeling. PH-associated decreases in peroxisome proliferator-activated receptor γ (PPARγ) stimulate PASMC proliferation, and PPARγ in coordination with PPARγ coactivator 1α (PGC1α) regulates mitochondrial gene expression and biogenesis. To further examine the impact of decreases in PPARγ expression on human PASMC (HPASMC) mitochondrial function, we hypothesized that depletion of either PPARγ or PGC1α perturbs mitochondrial structure and function to stimulate PASMC proliferation. To test this hypothesis, HPASMCs were exposed to hypoxia and treated pharmacologically with the PPARγ antagonist GW9662 or with siRNA against PPARγ or PGC1α for 72 hours. HPASMC proliferation (cell counting), target mRNA levels (qRT-PCR), target protein levels (Western blotting), mitochondria-derived H2O2 (confocal immunofluorescence), mitochondrial mass and fragmentation, and mitochondrial bioenergetic profiling were determined. Hypoxia or knockdown of either PPARγ or PGC1α increased HPASMC proliferation, enhanced mitochondria-derived H2O2, decreased mitochondrial mass, stimulated mitochondrial fragmentation, and impaired mitochondrial bioenergetics. Taken together, these findings provide novel evidence that loss of PPARγ diminishes PGC1α and stimulates derangements in mitochondrial structure and function that cause PASMC proliferation. Overexpression of PGC1α reversed hypoxia-induced HPASMC derangements. This study identifies additional mechanistic underpinnings of PH, and provides support for the notion of activating PPARγ as a novel therapeutic strategy in PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Anilidas/farmacología , Animales , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/prevención & control , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Interferencia de ARN
2.
Am J Respir Cell Mol Biol ; 56(1): 131-144, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612006

RESUMEN

Pulmonary hypertension (PH), a serious complication of sickle cell disease (SCD), causes significant morbidity and mortality. Although a recent study determined that hemin release during hemolysis triggers endothelial dysfunction in SCD, the pathogenesis of SCD-PH remains incompletely defined. This study examines peroxisome proliferator-activated receptor γ (PPARγ) regulation in SCD-PH and endothelial dysfunction. PH and right ventricular hypertrophy were studied in Townes humanized sickle cell (SS) and littermate control (AA) mice. In parallel studies, SS or AA mice were gavaged with the PPARγ agonist, rosiglitazone (RSG), 10 mg/kg/day, or vehicle for 10 days. In vitro, human pulmonary artery endothelial cells (HPAECs) were treated with vehicle or hemin for 72 hours, and selected HPAECs were treated with RSG. SS mice developed PH and right ventricular hypertrophy associated with reduced lung levels of PPARγ and increased levels of microRNA-27a (miR-27a), v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1), endothelin-1 (ET-1), and markers of endothelial dysfunction (platelet/endothelial cell adhesion molecule 1 and E selectin). HPAECs treated with hemin had increased ETS1, miR-27a, ET-1, and endothelial dysfunction and decreased PPARγ levels. These derangements were attenuated by ETS1 knockdown, inhibition of miR-27a, or PPARγ overexpression. In SS mouse lung or in hemin-treated HPAECs, activation of PPARγ with RSG attenuated reductions in PPARγ and increases in miR-27a, ET-1, and markers of endothelial dysfunction. In SCD-PH pathogenesis, ETS1 stimulates increases in miR-27a levels that reduce PPARγ and increase ET-1 and endothelial dysfunction. PPARγ activation attenuated SCD-associated signaling derangements, suggesting a novel therapeutic approach to attenuate SCD-PH pathogenesis.


Asunto(s)
Anemia de Células Falciformes/patología , Células Endoteliales/metabolismo , Endotelina-1/metabolismo , Pulmón/patología , MicroARNs/metabolismo , PPAR gamma/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Anemia de Células Falciformes/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hemina/farmacología , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/fisiopatología , Ligandos , Ratones , Modelos Biológicos , Arteria Pulmonar/patología , Rosiglitazona , Sístole/efectos de los fármacos , Tiazolidinedionas/farmacología , Regulación hacia Arriba/efectos de los fármacos
3.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L371-L383, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522568

RESUMEN

Pulmonary hypertension (PH) is a progressive disorder whose cellular pathogenesis involves enhanced smooth muscle cell (SMC) proliferation and resistance to apoptosis signals. Existing evidence demonstrates that the tumor suppressor programmed cell death 4 (PDCD4) affects patterns of cell growth and repair responses in the systemic vasculature following experimental injury. In the current study, the regulation PDCD4 and its functional effects on growth and apoptosis susceptibility in pulmonary artery smooth muscle cells were explored. We previously demonstrated that pharmacological activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) attenuated hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting the expression and mitogenic functions of microRNA-21 (miR-21). In the current study, we hypothesize that PPARγ stimulates PDCD4 expression and HPASMC apoptosis by inhibiting miR-21. Our findings demonstrate that PDCD4 is reduced in the mouse lung upon exposure to chronic hypoxia (10% O2 for 3 wk) and in hypoxia-exposed HPASMCs (1% O2). HPASMC apoptosis was reduced by hypoxia, by miR-21 overexpression, or by siRNA-mediated PPARγ and PDCD4 depletion. Activation of PPARγ inhibited miR-21 expression and resultant proliferation, while restoring PDCD4 levels and apoptosis to baseline. Additionally, pharmacological activation of PPARγ with rosiglitazone enhanced PDCD4 protein expression and apoptosis in a dose-dependent manner as demonstrated by increased annexin V detection by flow cytometry. Collectively, these findings demonstrate that PPARγ confers growth-inhibitory signals in hypoxia-exposed HPASMCs through suppression of miR-21 and the accompanying derepression of PDCD4 that augments HPASMC susceptibility to undergo apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , MicroARNs/metabolismo , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Anexina A5/genética , Anexina A5/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos del Músculo Liso/efectos de los fármacos , PPAR gamma/genética , Arteria Pulmonar/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tiazolidinedionas/farmacología
4.
Am J Respir Cell Mol Biol ; 54(1): 136-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26098770

RESUMEN

Endothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo. In PAECs isolated from patients with pulmonary arterial hypertension, microRNA (miR)-98 expression was reduced, and ET-1 protein levels and proliferation were increased. Similarly, hypoxia reduced miR-98 and increased ET-1 levels and PAEC proliferation in vitro. In vivo, hypoxia reduced miR-98 expression and increased ET-1 and proliferating cell nuclear antigen (PCNA) levels in mouse lung, derangements that were aggravated by treatment with the vascular endothelial growth factor receptor antagonist Sugen5416. Reporter assays confirmed that miR-98 binds directly to the ET-1 3'-untranslated region. Compared with littermate control mice, miR-98 levels were reduced and ET-1 and PCNA expression were increased in lungs from endothelial-targeted PPARγ knockout mice, whereas miR-98 levels were increased and ET-1 and PCNA expression was reduced in lungs from endothelial-targeted PPARγ-overexpression mice. Gain or loss of PPARγ function in PAECs in vitro confirmed that alterations in PPARγ were sufficient to regulate miR-98, ET-1, and PCNA expression. Finally, PPARγ activation with rosiglitazone regimens that attenuated hypoxia-induced PH in vivo and human PAEC proliferation in vitro restored miR-98 levels. The results of this study show that PPARγ regulates miR-98 to modulate ET-1 expression and PAEC proliferation. These results further clarify molecular mechanisms by which PPARγ participates in PH pathogenesis and therapy.


Asunto(s)
Células Endoteliales/metabolismo , Endotelina-1/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , MicroARNs/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal , Regiones no Traducidas 3' , Animales , Sitios de Unión , Proliferación Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelina-1/genética , Regulación de la Expresión Génica , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/patología , Indoles , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , PPAR gamma/agonistas , PPAR gamma/deficiencia , PPAR gamma/genética , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Pirroles , Interferencia de ARN , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología , Transfección , Remodelación Vascular
5.
Am J Respir Cell Mol Biol ; 47(5): 718-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22904198

RESUMEN

Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) contribute to hypoxia-induced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxia-exposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O(2)) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPARγ, and transforming growth factor (TGF)ß1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O(2)) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPARγ and TGF-ß1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H(2)O(2) release, proliferation, and TGF-ß1 expression and blunted reductions in PPARγ in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-ß1 and reductions in PPARγ expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxia-induced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , NADPH Oxidasas/antagonistas & inhibidores , Arteria Pulmonar/patología , Pirazoles/farmacología , Piridinas/farmacología , Animales , Hipoxia de la Célula , Células Cultivadas , Células Endoteliales/enzimología , Células Endoteliales/fisiología , Endotelio Vascular/patología , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/fisiología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Pirazoles/uso terapéutico , Pirazolonas , Piridinas/uso terapéutico , Piridonas , Interferencia de ARN , Rosiglitazona , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular/efectos de los fármacos
6.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L881-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21926265

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O(2)) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 µM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for 3 wk with or without gavage with RSG (10 mg·kg(-1)·day(-1)) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.


Asunto(s)
Endotelina-1/metabolismo , PPAR gamma/agonistas , Transducción de Señal , Tiazolidinedionas/farmacología , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Hipoxia de la Célula , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelina-1/genética , Enzimas Convertidoras de Endotelina , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Arteria Pulmonar/patología , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Rosiglitazona
7.
Am J Physiol Lung Cell Mol Physiol ; 299(4): L559-66, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20622120

RESUMEN

NADPH oxidases are a major source of superoxide production in the vasculature. The constitutively active Nox4 subunit, which is selectively upregulated in the lungs of human subjects and experimental animals with pulmonary hypertension, is highly expressed in vascular wall cells. We demonstrated that rosiglitazone, a synthetic agonist of the peroxisome proliferator-activated receptor-γ (PPARγ), attenuated hypoxia-induced pulmonary hypertension, vascular remodeling, Nox4 induction, and reactive oxygen species generation in the mouse lung. The current study examined the molecular mechanisms involved in PPARγ-regulated, hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells (HPASMC). Exposing HPASMC to 1% oxygen for 72 h increased Nox4 gene expression and H(2)O(2) production, both of which were reduced by treatment with rosiglitazone during the last 24 h of hypoxia exposure or by treatment with small interfering RNA (siRNA) to Nox4. Hypoxia also increased HPASMC proliferation as well as the activity of a Nox4 promoter luciferase reporter, and these increases were attenuated by rosiglitazone. Chromatin immunoprecipitation assays demonstrated that hypoxia increased binding of the NF-κB subunit, p65, to the Nox4 promoter and that binding was attenuated by rosiglitazone treatment. The role of NF-κB in Nox4 regulation was further supported by demonstrating that overexpression of p65 stimulated Nox4 promoter activity, whereas siRNA to p50 or p65 attenuated hypoxic stimulation of Nox4 promoter activity. These results provide novel evidence for NF-κB-mediated stimulation of Nox4 expression in HPASMC that can be negatively regulated by PPARγ. These data provide new insights into potential mechanisms by which PPARγ activation inhibits Nox4 upregulation and the proliferation of cells in the pulmonary vascular wall to ameliorate pulmonary hypertension and vascular remodeling in response to hypoxia.


Asunto(s)
Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/genética , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Peróxido de Hidrógeno/metabolismo , Hipoglucemiantes/farmacología , Hipoxia/patología , Ratones , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Arteria Pulmonar/citología , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacología
8.
Bone ; 43(1): 48-54, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18440890

RESUMEN

Both mechanical loading and nitric oxide (NO) have positive influences on bone mass. NO production is induced by mechanical strain via upregulation of eNOS mRNA and protein, the predominant NOS in adult bone. At the same time, strain causes decreased expression of RANKL, a factor critical for osteoclastogenesis. In this study, we harvested primary stromal cells from wild-type (WT) and eNOS(-/-) mice to test whether induction of NO by mechanical strain was necessary for transducing mechanical inhibition of RANKL. We found that strain inhibition of RANKL expression was prevented by NOS inhibitors (L-NAME and L-NMMA) in WT stromal cells. Surprisingly, stromal cells from eNOS(-/-) mice showed significant mechanical repression of RANKL expression (p<0.05). Mechanical strain still increased NO production in the absence of eNOS, and was abolished by SMTC, a specific nNOS inhibitor. nNOS mRNA and protein expression were increased by strain in eNOS(-/-) but not in WT cells, revealing that nNOS was mechanically sensitive. When NO synthesis was blocked with either SMTC or siRNA targeting nNOS in eNOS(-/-) cells however, strain still was able to suppress RANKL expression by 34%. This indicated that strain suppression of RANKL can also occur through non-NO dependent pathways. While our results confirm the importance of NO in the mechanical control of skeletal remodeling, they also suggest alternative signaling pathways by which mechanical force can produce anti-catabolic effects on the skeleton.


Asunto(s)
Células de la Médula Ósea/metabolismo , Óxido Nítrico/fisiología , Ligando RANK/antagonistas & inhibidores , Estrés Mecánico , Animales , Remodelación Ósea , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ligando RANK/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/metabolismo
9.
Am J Med Sci ; 352(1): 71-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27432037

RESUMEN

BACKGROUND: Pathogenesis of pulmonary hypertension is complex and involves activation of the transcription factor, hypoxia-inducible factor-1 (HIF-1) that shifts cellular metabolism from aerobic respiration to glycolysis, in part, by increasing the expression of its downstream target pyruvate dehydrogenase kinase-1 (PDK-1), thereby promoting a proliferative, apoptosis-resistant phenotype in pulmonary vascular cells. Activation of the nuclear hormone transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), attenuates pulmonary hypertension and pulmonary artery smooth muscle cell (PASMC) proliferation. In the current study, we determined whether PPARγ inhibits HIF-1α and PDK-1 expression in human PASMCs. METHODS: HPASMCs were exposed to normoxia (21% O2) or hypoxia (1% O2) for 2-72 hours ± treatment with the PPARγ-ligand, rosiglitazone (RSG, 10µM). RESULTS: Compared to normoxia, HIF-1α mRNA levels were elevated in HPASMC at 2 hours hypoxia and reduced to baseline levels by 24-72 hours. HIF-1α protein levels increased following 4 and 8 hours of hypoxia and returned to baseline levels by 24 and 72 hours. PDK-1 protein levels increased following 24 hours hypoxia and remained elevated by 72 hours. RSG treatment at the onset of hypoxia attenuated HIF-1α protein and PDK-1 mRNA and protein levels at 4, 8 and 24 hours of hypoxia, respectively. However, RSG treatment during final 24 hours of 72-hour hypoxia, an intervention that inhibits HPASMC proliferation, failed to prevent hypoxia-induced PDK-1 expression. CONCLUSION: Hypoxia causes transient activation of HPASMC HIF-1α that is attenuated by RSG treatment initiated at hypoxia onset. These findings provide novel evidence that PPARγ modulates fundamental and acute cellular responses to hypoxia through both HIF-1-dependent and HIF-1-independent mechanisms.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , PPAR gamma/genética , Transducción de Señal , Tiazolidinedionas/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ligandos , Miocitos del Músculo Liso/fisiología , PPAR gamma/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Arteria Pulmonar/fisiopatología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Rosiglitazona
10.
PLoS One ; 10(7): e0133391, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26208095

RESUMEN

Pulmonary hypertension (PH) is a progressive and often fatal disorder whose pathogenesis involves pulmonary artery smooth muscle cell (PASMC) proliferation. Although modern PH therapies have significantly improved survival, continued progress rests on the discovery of novel therapies and molecular targets. MicroRNA (miR)-21 has emerged as an important non-coding RNA that contributes to PH pathogenesis by enhancing vascular cell proliferation, however little is known about available therapies that modulate its expression. We previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) agonists attenuated hypoxia-induced HPASMC proliferation, vascular remodeling and PH through pleiotropic actions on multiple targets, including transforming growth factor (TGF)-ß1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). PTEN is a validated target of miR-21. We therefore hypothesized that antiproliferative effects conferred by PPARγ activation are mediated through inhibition of hypoxia-induced miR-21 expression. Human PASMC monolayers were exposed to hypoxia then treated with the PPARγ agonist, rosiglitazone (RSG,10 µM), or in parallel, C57Bl/6J mice were exposed to hypoxia then treated with RSG. RSG attenuated hypoxic increases in miR-21 expression in vitro and in vivo and abrogated reductions in PTEN and PASMC proliferation. Antiproliferative effects of RSG were lost following siRNA-mediated PTEN depletion. Furthermore, miR-21 mimic decreased PTEN and stimulated PASMC proliferation, whereas miR-21 inhibition increased PTEN and attenuated hypoxia-induced HPASMC proliferation. Collectively, these results demonstrate that PPARγ ligands regulate proliferative responses to hypoxia by preventing hypoxic increases in miR-21 and reductions in PTEN. These findings further clarify molecular mechanisms that support targeting PPARγ to attenuate pathogenic derangements in PH.


Asunto(s)
Hipoxia/metabolismo , Ligandos , MicroARNs/genética , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/citología , Animales , Proliferación Celular , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
11.
Free Radic Biol Med ; 87: 36-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26073127

RESUMEN

Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH.


Asunto(s)
Hipoxia de la Célula , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Proliferación Celular , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/patología , Glicoproteínas de Membrana/metabolismo , Ratones , Mitocondrias/patología , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Fenitoína/análogos & derivados , Fenitoína/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Superóxido Dismutasa/metabolismo
12.
Free Radic Biol Med ; 80: 111-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557278

RESUMEN

Hypoxia stimulates pulmonary hypertension (PH) in part by increasing the proliferation of pulmonary vascular wall cells. Recent evidence suggests that signaling events involved in hypoxia-induced cell proliferation include sustained nuclear factor-kappaB (NF-κB) activation, increased NADPH oxidase 4 (Nox4) expression, and downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) levels. To further understand the role of reduced PPARγ levels associated with PH pathobiology, siRNA was employed to reduce PPARγ levels in human pulmonary artery smooth muscle cells (HPASMC) in vitro under normoxic conditions. PPARγ protein levels were reduced to levels comparable to those observed under hypoxic conditions. Depletion of PPARγ for 24-72 h activated mitogen-activated protein kinase, ERK 1/2, and NF-κB. Inhibition of ERK 1/2 prevented NF-κB activation caused by PPARγ depletion, indicating that ERK 1/2 lies upstream of NF-κB activation. Depletion of PPARγ for 72 h increased NF-κB-dependent Nox4 expression and H2O2 production. Inhibition of NF-κB or Nox4 attenuated PPARγ depletion-induced HPASMC proliferation. Degradation of PPARγ depletion-induced H2O2 by PEG-catalase prevented HPASMC proliferation and also ERK 1/2 and NF-κB activation and Nox4 expression, indicating that H2O2 participates in feed-forward activation of the above signaling events. Contrary to the effects of PPARγ depletion, HPASMC PPARγ overexpression reduced ERK 1/2 and NF-κB activation, Nox4 expression, and cell proliferation. Taken together these findings provide novel evidence that PPARγ plays a central role in the regulation of the ERK1/2-NF-κB-Nox4-H2O2 signaling axis in HPASMC. These results indicate that reductions in PPARγ caused by pathophysiological stimuli such as prolonged hypoxia exposure are sufficient to promote the proliferation of pulmonary vascular smooth muscle cells observed in PH pathobiology.


Asunto(s)
Células Endoteliales/enzimología , NADPH Oxidasas/genética , FN-kappa B/genética , PPAR gamma/genética , Anticuerpos Neutralizantes/farmacología , Catalasa/farmacología , Hipoxia de la Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Flavonoides/farmacología , Regulación de la Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Polietilenglicoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
13.
PLoS One ; 10(10): e0139756, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26451838

RESUMEN

Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis.


Asunto(s)
Aorta/fisiología , Músculo Liso Vascular/citología , PPAR gamma/genética , Animales , Aorta/anatomía & histología , Aorta/citología , Presión Sanguínea , Línea Celular , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Transducción de Señal , Regulación hacia Arriba , Vasoconstricción , Vasodilatación
14.
J Bone Miner Res ; 17(8): 1452-60, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12162499

RESUMEN

Mechanical input is known to regulate skeletal mass. In vitro, application of strain inhibits osteoclast formation by decreasing expression of the ligand RANKL in bone stromal cells, but the mechanism responsible for this down-regulation is unknown. In experiments here, application of 1.8% equibiaxial strain for 6 h reduced vitamin D-stimulated RANKL mRNA expression by nearly one-half in primary bone stromal cells. Application of strain caused a rapid activation of ERK1/2, which returned to baseline by 60 minutes. Adding the ERK1/2 inhibitor PD98059 30 minutes before strain delivery prevented the strain effect on RANKL mRNA expression, suggesting that activation of ERK1/2 was required for transduction of the mechanical force. Mechanical strain also activated N-terminal Jun kinase (JNK) that, in contrast, did not return to baseline during 24 h of continuous strain. This suggests that JNK may represent an accessory pathway for mechanical transduction in bone cells. Our data indicate that strain modulation of RANKL expression involves activation of MAPK pathways.


Asunto(s)
Huesos/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Mecánico , Células del Estroma/metabolismo , Animales , Secuencia de Bases , Western Blotting , Huesos/citología , Huesos/enzimología , Cartilla de ADN , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Ligando RANK , ARN Mensajero/genética , Receptor Activador del Factor Nuclear kappa-B , Transducción de Señal , Células del Estroma/enzimología
15.
Endocrinology ; 145(2): 751-9, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14563699

RESUMEN

Bone remodeling reflects an equilibrium between bone resorption and formation. The local expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) in bone determines the entry of monoblastic precursors into the osteoclast lineage and subsequent bone resorption. Nitric oxide (NO) inhibits osteoclastic bone resorption in vitro and regulates bone remodeling in vivo. An interaction of NO with RANKL and OPG has not been studied. Here, we show that treatment of ST-2 murine stromal cells with the NO donor sodium nitroprusside (100 microm) for 24 h inhibited 1,25 dihydroxyvitamin D(3)-induced RANKL mRNA to less than 33 +/- 7% of control level, whereas OPG mRNA increased to 204 +/- 19% of control. NOR-4 replicated these NO effects. The effects of NO were dose dependent and associated with changes in protein levels: RANKL protein decreased and OPG protein increased after treatment with NO. PTH-induced RANKL expression in primary stromal cells was inhibited by sodium nitroprusside, indicating that the NO effect did not require vitamin D. NO donor did not change the stability of RANKL or OPG mRNAs, suggesting that NO affected transcription. Finally, cGMP, which can function as a second messenger for NO, did not reproduce the NO effect, nor did inhibition of endogenous guanylate cyclase prevent the NO effect on these osteoactive genes. The effect of NO to decrease the RANKL/OPG equilibrium should lead to decreased recruitment of osteoclasts and positive bone formation. Thus, drugs and conditions that cause local increase in NO formation in bone may have positive effects on bone remodeling.


Asunto(s)
Células de la Médula Ósea/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Óxido Nítrico/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Células del Estroma/metabolismo , Animales , Calcitriol/farmacología , Línea Celular , GMP Cíclico/farmacología , Inhibidores Enzimáticos/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Osteoprotegerina , Hormona Paratiroidea/farmacología , Ligando RANK , ARN Mensajero/análisis , Receptor Activador del Factor Nuclear kappa-B , Receptores del Factor de Necrosis Tumoral , Transcripción Genética/efectos de los fármacos
16.
PLoS One ; 9(6): e98532, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24906007

RESUMEN

Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Proliferación Celular , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Araquidonato 5-Lipooxigenasa/genética , Hipoxia de la Célula , Línea Celular , Células Endoteliales/efectos de los fármacos , Humanos , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Indoles/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Arteria Pulmonar/citología
17.
Free Radic Biol Med ; 63: 151-60, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23684777

RESUMEN

The ligand-activated transcription factor peroxisome proliferator-activated receptor γ (PPARγ) regulates metabolism, cell proliferation, and inflammation. Pulmonary hypertension (PH) is associated with reduced PPARγ expression, and hypoxia exposure regimens that cause PH reduce PPARγ expression. This study examines mechanisms of hypoxia-induced PPARγ downregulation in vitro and in vivo. Hypoxia reduced PPARγ mRNA and protein levels, PPARγ activity, and the expression of PPARγ-regulated genes in human pulmonary artery smooth muscle cells (HPASMCs) exposed to 1% oxygen for 72 h. Similarly, exposure of mice to hypoxia (10% O2) for 3 weeks reduced PPARγ mRNA and protein in mouse lung. Inhibiting ERK1/2 with PD98059 or treatment with siRNA directed against either NF-κB p65 or Nox4 attenuated hypoxic reductions in PPARγ expression and activity. Furthermore, degradation of H2O2 using PEG-catalase prevented hypoxia-induced ERK1/2 phosphorylation and Nox4 expression, suggesting sustained ERK1/2-mediated signaling and Nox4 expression in this response. Mammalian two-hybrid assays demonstrated that PPARγ and p65 bind directly to each other in a mutually repressive fashion. We conclude from these results that hypoxic regimens that promote PH pathogenesis and HPASMC proliferation reduce PPARγ expression and activity through ERK1/2-, p65-, and Nox4-dependent pathways. These findings provide novel insights into mechanisms by which pathophysiological stimuli such as hypoxia cause loss of PPARγ activity and pulmonary vascular cell proliferation, pulmonary vascular remodeling, and PH. These results also indicate that restoration of PPARγ activity with pharmacological ligands may provide a novel therapeutic approach in selected forms of PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Animales , Catalasa/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Hipoxia/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Miocitos del Músculo Liso/citología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , PPAR gamma/genética , Polietilenglicoles/metabolismo , Arteria Pulmonar/citología , Arteria Pulmonar/patología , ARN Interferente Pequeño , Transducción de Señal
18.
Pulm Circ ; 2(4): 483-91, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23372933

RESUMEN

Transforming growth factor-ß1 (TGF- ß1) and thrombospondin-1 (TSP-1) are hypoxia-responsive mitogens that promote vascular smooth muscle cell (SMC) proliferation, a critical event in the pathogenesis of pulmonary hypertension (PH). We previously demonstrated that hypoxia-induced human pulmonary artery smooth muscle (HPASMC) cell proliferation and expression of the NADPH oxidase subunit, Nox4, were attenuated by the peroxisome proliferator-activated receptor γ (PPARγ) agonist, rosiglitazone. The current study examines the hypothesis that rosiglitazone regulates Nox4 expression and HPASMC proliferation by attenuating TSP-1 signaling. Selected HPASMC were exposed to normoxic or hypoxic (1% O(2)) environments or TSP-1 (0-1 µg/ ml) for 72 hours ± administration of rosiglitazone (10 µM). Cellular proliferation, Nox4, TSP-1, and TGF-ß1 expression and reactive oxygen species generation were measured. Mice exposed to hypoxia (10% O(2)) for three weeks were treated with rosiglitazone (10 mg/kg/day) for the final 10 days, and lung TSP-1 expression was examined. Hypoxia increased TSP-1 and TGF-ß1 expression and HPASMC proliferation, and neutralizing antibodies to TSP-1 or TGF-ß1 attenuated proliferation. Rosiglitazone attenuated hypoxia-induced HPASMC proliferation and increases in mouse lung and HPASMC TSP-1 expression, but failed to reduce increases in TGF-ß1 expression or Nox4 expression and activity caused by direct TSP-1 stimulation. Transfecting HPASMC with siRNA to Nox4 attenuated hypoxia- or TSP-1-stimulated HPASMC proliferation. These findings provide novel evidence that TSP-1-mediated Nox4 expression plays a critical role in hypoxia-induced HPASMC proliferation. PPARγ activation with exogenous ligands attenuates TSP-1 expression to reduce Nox4 expression. These results clarify mechanisms of hypoxia-induced SMC proliferation and suggest additional pathways by which PPARγ agonists may regulate critical steps in the pathobiology of PH.

19.
J Cell Physiol ; 207(2): 454-60, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16419041

RESUMEN

Mechanical strain inhibits osteoclastogenesis by regulating osteoblast functions: We have shown that strain inhibits receptor activator of NF-kappaB ligand (RANKL) expression and increases endothelial nitric oxide synthase (eNOS) and nitric oxide levels through ERK1/2 signaling in primary bone stromal cells. The primary stromal culture system, while contributing greatly to understanding of how the microenvironment regulates bone remodeling is limited in use for biochemical assays and studies of other osteoprogenitor cell responses to mechanical strain: Stromal cells proliferate poorly and lose aspects of the strain response after a relatively short time in culture. In this study, we used the established mouse osteoblast cell line, conditionally immortalized murine calvarial (CIMC-4), harvested from mouse calvariae conditionally immortalized by insertion of the gene coding for a temperature-sensitive mutant of SV40 large T antigen (TAg) and support osteoclastogenesis. Mechanical strain (0.5-2%, 10 cycles per min, equibiaxial) caused magnitude-dependent decreases in RANKL expression to less than 50% those of unstrained cultures. Overnight strains of 2% also increased osterix (OSX) and RUNX2 expression by nearly twofold as measured by RT-PCR. Importantly, the ERK1/2 inhibitor, PD98059, completely abrogated the strain effects bringing RANKL, OSX, and RUNX2 gene expression completely back to control levels. These data indicate that the strain effects on CIMC-4 cells require activation of ERK1/2 pathway. Therefore, the CIMC-4 cell line is a useful alternative in vitro model which effectively recapitulates aspects of the primary stromal cells and adds an extended capacity to study osteoblast control of bone remodeling in a mechanically active environment.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteoblastos/metabolismo , Células del Estroma/metabolismo , Fosfatasa Alcalina/genética , Animales , Calcitriol/farmacología , Proteínas Portadoras/genética , Línea Celular Transformada , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/genética , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoprotegerina , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Receptores Citoplasmáticos y Nucleares/genética , Receptores del Factor de Necrosis Tumoral/genética , Factor de Transcripción Sp7 , Estrés Mecánico , Células del Estroma/efectos de los fármacos , Factores de Transcripción/genética
20.
J Biol Chem ; 281(3): 1412-8, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16306046

RESUMEN

Mechanical input is known to regulate bone remodeling, yet the molecular events involved in mechanical signal transduction are poorly understood. We here investigate proximal events leading to the ERK1/2 activation that is required for mechanical repression of RANKL (receptor activator of NF-kappaB ligand) expression, the factor that controls local recruitment of osteoclasts. Using primary murine bone stromal cells we show that dynamic mechanical strain via substrate deformation activates Ras-GTPase, in particular the H-Ras isoform. Pharmacological inhibition of H-Ras function prevents strain activation of H-Ras as well as the downstream mechanical repression of RANKL. Furthermore, small interfering RNA silencing of H-Ras, but not K-Ras, abrogates mechanical strain repression of RANKL. H-Ras-specific inhibition of mechanorepression of RANKL was also demonstrated in a murine pre-osteoblast cell line (CIMC-4). The requirement of cholesterol for H-Ras activation was probed; cholesterol depletion of rafts using methyl-betacyclodextrin prevented mechanical H-Ras activation. That the mechanical repression of RANKL requires activation of H-Ras, a specific isoform of Ras-GTP that is known to reside in the lipid raft microdomain, suggests that spatial arrangements are critical for generation of specific downstream events in response to mechanical signals. By partitioning signals this way, cells may be able to generate different downstream responses through seemingly similar signaling cascades.


Asunto(s)
Proteínas Portadoras/genética , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Fenómenos Biomecánicos , Células de la Médula Ósea/citología , Proteínas Portadoras/antagonistas & inhibidores , Línea Celular , Células Cultivadas , Activación Enzimática , Farnesiltransferasa/antagonistas & inhibidores , Cinética , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones , Osteoblastos/citología , Osteoblastos/fisiología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Células del Estroma/citología , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA