Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2320250121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074275

RESUMEN

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called "Arginine-rich NLS" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.


Asunto(s)
Arginina , Señales de Localización Nuclear , Análisis de la Célula Individual , Animales , Señales de Localización Nuclear/metabolismo , Arginina/metabolismo , Análisis de la Célula Individual/métodos , Ratones , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Núcleo Celular/metabolismo , Microscopía Fluorescente/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido
2.
Cell Rep ; 43(9): 114668, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39207900

RESUMEN

Ventral tegmental area (VTA) dopamine neurons regulate reward-related associative learning and reward-driven motivated behaviors, but how these processes are coordinated by distinct VTA neuronal subpopulations remains unresolved. Here, we compare the contribution of two primarily dopaminergic and largely non-overlapping VTA subpopulations, all VTA dopamine neurons and VTA GABAergic neurons of the mouse midbrain, to these processes. We find that the dopamine subpopulation that projects to the nucleus accumbens (NAc) core preferentially encodes reward-predictive cues and prediction errors. In contrast, the subpopulation that projects to the NAc shell preferentially encodes goal-directed actions and relative reward anticipation. VTA GABA neuron activity strongly contrasts VTA dopamine population activity and preferentially encodes reward outcome and retrieval. Electrophysiology, targeted optogenetics, and whole-brain input mapping reveal multiple convergent sources that contribute to the heterogeneity among VTA dopamine subpopulations that likely underlies their distinct encoding of reward-related associations and motivation that defines their functions in these contexts.


Asunto(s)
Neuronas Dopaminérgicas , Motivación , Núcleo Accumbens , Recompensa , Área Tegmental Ventral , Área Tegmental Ventral/fisiología , Animales , Motivación/fisiología , Ratones , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Masculino , Núcleo Accumbens/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones Endogámicos C57BL
3.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38045271

RESUMEN

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single-cells. However, conventional fluorescent protein (FP) modifications used to discriminate single-cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and non-deleterious nuclear localization signal (NLS) tag strategy, called 'Arginine-rich NLS' (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single-cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes, and in response to both local and systemic brain wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances ML-automated segmentation of single-cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single-cells at scale and paired with behavioral procedures.

4.
Stem Cell Reports ; 18(12): 2400-2417, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039971

RESUMEN

In mammals, loss of retinal cells due to disease or trauma is an irreversible process that can lead to blindness. Interestingly, regeneration of retinal neurons is a well established process in some non-mammalian vertebrates and is driven by the Müller glia (MG), which are able to re-enter the cell cycle and reprogram into neurogenic progenitors upon retinal injury or disease. Progress has been made to restore this mechanism in mammals to promote retinal regeneration: MG can be stimulated to generate new neurons in vivo in the adult mouse retina after the over-expression of the pro-neural transcription factor Ascl1. In this study, we applied the same strategy to reprogram human MG derived from fetal retina and retinal organoids into neurons. Combining single cell RNA sequencing, single cell ATAC sequencing, immunofluorescence, and electrophysiology we demonstrate that human MG can be reprogrammed into neurogenic cells in vitro.


Asunto(s)
Neurogénesis , Neuroglía , Animales , Ratones , Humanos , Neuroglía/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Retina/metabolismo , Mamíferos/metabolismo , Células Ependimogliales/metabolismo , Proliferación Celular/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
5.
Radiat Res ; 193(5): 407-424, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32134362

RESUMEN

Radiotherapy, surgery and the chemotherapeutic agent temozolomide (TMZ) are frontline treatments for glioblastoma multiforme (GBM). However beneficial, GBM treatments nevertheless cause anxiety or depression in nearly 50% of patients. To further understand the basis of these neurological complications, we investigated the effects of combined radiotherapy and TMZ chemotherapy (combined treatment) on neurological impairments using a mouse model. Five weeks after combined treatment, mice displayed anxiety-like behaviors, and at 15 weeks both anxiety- and depression-like behaviors were observed. Relevant to the known roles of the serotonin axis in mood disorders, we found that 5HT1A serotonin receptor levels were decreased by ∼50% in the hippocampus at both early and late time points, and a 37% decrease in serotonin levels was observed at 15 weeks postirradiation. Furthermore, chronic treatment with the selective serotonin reuptake inhibitor fluoxetine was sufficient for reversing combined treatment-induced depression-like behaviors. Combined treatment also elicited a transient early increase in activated microglia in the hippocampus, suggesting therapy-induced neuroinflammation that subsided by 15 weeks. Together, the results of this study suggest that interventions targeting the serotonin axis may help ameliorate certain neurological side effects associated with the clinical management of GBM to improve the overall quality of life for cancer patients.


Asunto(s)
Neurología , Radioterapia/efectos adversos , Temozolomida/efectos adversos , Animales , Ansiedad/diagnóstico , Ansiedad/etiología , Ansiedad/metabolismo , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/efectos de la radiación , Terapia Combinada/efectos adversos , Depresión/inducido químicamente , Depresión/etiología , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/efectos de la radiación , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Temozolomida/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA