Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 38(8): 1959-1972, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29348190

RESUMEN

Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Hipercinesia/etiología , Animales , Disfunción Cognitiva/metabolismo , Femenino , Técnicas de Inactivación de Genes , Hipercinesia/metabolismo , Masculino , Ratas , Ratas Wistar
2.
Neurobiol Dis ; 124: 289-296, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30521842

RESUMEN

GBA1 gene encodes for the lysosomal membrane protein glucocerebrosidase (GCase). GBA1 heterozygous mutations profoundly impair GCase activity and are currently recognized as an important risk factor for the development of Parkinson's disease (PD). Deficits in lysosomal degradation pathways may contribute to pathological α-synuclein accumulation, thereby favoring dopaminergic neuron degeneration and associated microglial activation. However, the precise mechanisms by which GCase deficiency may influence PD onset and progression remain unclear. In this work we used conduritol-ß-epoxide (CBE), a potent inhibitor of GCase, to induce a partial, systemic defect of GCase activity comparable to that associated with heterozygous GBA1 mutations, in mice. Chronic (28 days) administration of CBE (50 mg/kg, i.p.) was combined with administration of a classic PD-like inducing neurotoxin, such as MPTP (30 mg/kg, i.p. for 5 days). The aim was to investigate whether a pre-existing GCase defect may influence the effects of MPTP in terms of nigrostriatal damage, microglia activation and α-synuclein accumulation. Pre-treatment with CBE had tendency to enhance MPTP-induced neurodegeneration in striatum and caused significant increase of total α-synuclein expression in substantia nigra. Microglia was remarkably activated by CBE alone, without further increases when combined with MPTP. Overall, we propose this model as an additional tool to study pathophysiological processes of PD in the presence of GCase defects.


Asunto(s)
Modelos Animales de Enfermedad , Glucosilceramidasa/antagonistas & inhibidores , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/patología , Animales , Inhibidores Enzimáticos/farmacología , Inositol/análogos & derivados , Inositol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Neurosci ; 34(32): 10603-15, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100594

RESUMEN

α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Dopamina/metabolismo , Microdominios de Membrana/efectos de los fármacos , Neuronas/citología , alfa-Sinucleína/farmacología , Compuestos de Anilina/metabolismo , Animales , Anticuerpos/farmacología , Canales de Calcio Tipo N/inmunología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Ganglio Cervical Superior/citología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Sinaptofisina/metabolismo , Xantenos/metabolismo
4.
Nutrition ; 69: 110494, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586482

RESUMEN

OBJECTIVES: Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNc). The proinflammatory response can occur early in the disease, contributing to nigrostriatal degeneration. Identification of the new molecules, which are able to slow down the degenerative process associated with PD, represents one of the main interests. Recently, natural polyphenols, especially lignans, have raised attention for their anti-inflammatory, antioxidant, and estrogenic activity at a peripheral level. The aim of this study was to evaluate the central effects of chronic treatment with lignan 7-hydroxymatairesinol (HMR/lignan) on neurodegenerative, neuroinflammatory processes and motor deficits induced by a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats to evaluate the potential neuroprotective properties of this compound. METHODS: Sprague-Dawley male rats underwent lignan (10 mg/kg) or vehicle treatment (oral) for 4 wk starting from the day of 6-OHDA injection. The degree of nigrostriatal damage was evaluated by immunohistochemistry. Moreover, we performed a quantitative and qualitative assessment of neuroinflammatory process, including phenotypic polarization of microglia and astrocytes. The motor performance was assessed by behavioral tests. RESULTS: We demonstrated that chronic treatment with HMR/lignan was able to slow down the progression of degeneration of striatal dopaminergic terminals in a rat model of PD, with a consequent improvement in motor performance. Nevertheless, the anti-inflammatory effect of HMR/lignan observed in SNc was not sufficient to protect dopaminergic cells bodies. CONCLUSION: These results suggest intriguing properties of HMR/lignan at neuroprotective and symptomatic levels in the context of PD.


Asunto(s)
Lignanos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Sprague-Dawley
5.
Front Mol Neurosci ; 13: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194374

RESUMEN

Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors found in mammals. While TAAR1 is expressed in several brain regions, all the other TAARs have been described mainly in the olfactory epithelium and the glomerular layer of the olfactory bulb and are believed to serve as a new class of olfactory receptors sensing innate odors. However, there is evidence that TAAR5 could play a role also in the central nervous system. In this study, we characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO) expressing beta-galactosidase mapping TAAR5 expression. We found that TAAR5 is expressed not only in the glomerular layer in the olfactory bulb but also in deeper layers projecting to the limbic brain olfactory circuitry with prominent expression in numerous limbic brain regions, such as the anterior olfactory nucleus, the olfactory tubercle, the orbitofrontal cortex (OFC), the amygdala, the hippocampus, the piriform cortex, the entorhinal cortex, the nucleus accumbens, and the thalamic and hypothalamic nuclei. TAAR5-KO mice did not show gross developmental abnormalities but demonstrated less anxiety- and depressive-like behavior in several behavioral tests. TAAR5-KO mice also showed significant decreases in the tissue levels of serotonin and its metabolite in several brain areas and were more sensitive to the hypothermic action of serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propilamino)tetralin (8-OH-DPAT). These observations indicate that TAAR5 is not just innate odor-sensing olfactory receptor but also serves to provide olfactory input into limbic brain areas to regulate emotional behaviors likely via modulation of the serotonin system. Thus, anxiolytic and/or antidepressant action of future TAAR5 antagonists could be predicted. In general, "olfactory" TAAR-mediated brain circuitry may represent a previously unappreciated neurotransmitter system involved in the transmission of innate odors into emotional behavioral responses.

6.
J Parkinsons Dis ; 9(3): 501-515, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31282427

RESUMEN

Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson's disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.


Asunto(s)
Inflamación , Estrés Oxidativo , Enfermedad de Parkinson , Caracteres Sexuales , Femenino , Humanos , Masculino , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia
7.
Behav Brain Res ; 359: 516-527, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472113

RESUMEN

Dopamine (DA) is a key neurotransmitter of the central nervous system, whose availability is regulated by the dopamine transporter (DAT). Deletion of DAT gene leading to hyperdopaminergia was previously performed on mouse models. This enabled recapitulation of the core symptoms of Attention-Deficit / Hyper-activity Disorder (ADHD), which include hyperactivity, inattention and cognitive impairment. We used recently developed DAT knockout (DAT-KO) rats to carry out further behavioral profiling on this novel model of hyperdopaminergia. DAT-KO rats display elevated locomotor activity and restless environmental exploration, associated with a transient anxiety profile. Furthermore, these rats show pronounced stereotypy and compulsive-like behavior at the Marble-Burying test. Homozygous DAT-KO rats mantain intact social interaction when tested in a social-preference task, while heterozygous (HET) rats show high inactivity associated with close proximity to the social stimulus. Ex-vivo evaluation of brain catecholamines highlighted increased levels of norepinephrine in the hippocampus and hypothalamus exclusively of heterozygous rats. Taken together, our data present evidence of unexpected asocial tendencies in heterozygous (DAT-HET) rats associated with neurochemical alterations in norepinephrine neurotransmission. We shed light on the behavioral and neurochemical consequences of altered DAT function in a higher, more complex model of hyperdopaminergia. Unraveling the role of DA neurotransmission in DAT-KO rats has very important implications in the understanding of many psychiatric illnesses, including ADHD, where alterations in DA system have been demonstrated.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Norepinefrina/metabolismo , Conducta Social , Animales , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/psicología , Conducta Compulsiva/metabolismo , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Conducta Exploratoria/fisiología , Miedo/fisiología , Aseo Animal/fisiología , Heterocigoto , Homocigoto , Actividad Motora/fisiología , Fenotipo , Ratas Transgénicas , Ratas Wistar
8.
Sci Rep ; 7(1): 17765, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259298

RESUMEN

Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Homeostasis/fisiología , Sueño/fisiología , Adaptación Fisiológica/genética , Animales , Encéfalo/fisiología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Femenino , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mutación/genética , Sueño/genética
9.
Naunyn Schmiedebergs Arch Pharmacol ; 389(5): 457-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26861550

RESUMEN

Poor validity of preclinical animal models is one of the most commonly discussed explanations for the failures to develop novel drugs in general and in neuroscience in particular. However, there are several areas of neuroscience such as injury-induced spasticity where etiological factor can be adequately recreated and models can focus on specific pathophysiological mechanisms that likely contribute to spasticity syndrome in humans (such as motoneuron hyperexcitability and spinal hyperreflexia). Methods used to study spasticity in preclinical models are expected to have a high translational value (e.g., electromyogram (EMG)-based electrophysiological tools) and can efficiently assist clinical development programs. However, validation of these models is not complete yet. First, true predictive validity of these models is not established as clinically efficacious drugs have been used to reverse validate preclinical models while newly discovered mechanisms effective in preclinical models are yet to be fully explored in humans (e.g., 5-HT2C receptor inverse agonists, fatty acid amid hydrolase inhibitors). Second, further efforts need to be invested into cross-laboratory validation of study protocols and tools, adherence to the highest quality standards (blinding, randomization, pre-specified study endpoints, etc.), and systematic efforts to replicate key sets of data. These appear to be readily achievable tasks that will enable development not only of symptomatic but also of disease-modifying therapy of spasticity, an area that seems to be currently not in focus of research efforts.


Asunto(s)
Modelos Animales de Enfermedad , Espasticidad Muscular/fisiopatología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Conducta Animal , Electromiografía
10.
Front Neurosci ; 9: 39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25762894

RESUMEN

The newly discovered trace amine-associated receptor 1 (TAAR1) has the ability to regulate both dopamine function and psychostimulant action. Here, we tested in rats the ability of RO5203648, a selective TAAR1 partial agonist, to modulate the physiological and behavioral effects of methamphetamine (METH). In experiment 1, RO5203468 dose- and time-dependently altered METH-induced locomotor activity, manifested as an early attenuation followed by a late potentiation of METH's stimulating effects. In experiment 2, rats received a 14-day treatment regimen during which RO5203648 was co-administered with METH. RO5203648 dose-dependently attenuated METH-stimulated hyperactivity, with the effects becoming more apparent as the treatments progressed. After chronic exposure and 3-day withdrawal, rats were tested for locomotor sensitization. RO5203648 administration during the sensitizing phase prevented the development of METH sensitization. However, RO5203648, at the high dose, cross-sensitized with METH. In experiment 3, RO5203648 dose-dependently blocked METH self-administration without affecting operant responding maintained by sucrose, and exhibited lack of reinforcing efficacy when tested as a METH's substitute. Neurochemical data showed that RO5203648 did not affect METH-mediated DA efflux and uptake inhibition in striatal synaptosomes. In vivo, however, RO5203648 was able to transiently inhibit METH-induced accumulation of extracellular DA levels in the nucleus accumbens. Taken together, these data highlight the significant potential of TAAR1 to modulate METH's neurochemical and behavioral effects.

11.
Neuropsychopharmacology ; 40(9): 2217-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25749299

RESUMEN

Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.


Asunto(s)
Potenciales Postsinápticos Excitadores/genética , Corteza Prefrontal/metabolismo , Células Piramidales/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Conducta Impulsiva/efectos de los fármacos , Conducta Impulsiva/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxazoles/farmacología , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Esquema de Refuerzo
12.
J Clin Invest ; 124(7): 3215-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24937431

RESUMEN

Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches.


Asunto(s)
Neuronas Dopaminérgicas/trasplante , Trastornos Parkinsonianos/terapia , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Transdiferenciación Celular/genética , Clozapina/análogos & derivados , Clozapina/farmacología , Drogas de Diseño , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA