Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Org Biomol Chem ; 20(42): 8293-8304, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36227250

RESUMEN

α,α-Difluoromethyl ketones (DFMKs) have emerged as currently investigated agents benefiting from the merging of chemico-physical features conferred by the constitutive elements (-CHF2 and carbonyl moietites). With a view to biological applications, the additional incorporation of heterocycles is a desirable property enabling the tuning of critical factors encompassing the pharmaco-dynamic and kinetic profiles. The underexplored assembling of α,α-difluoromethyl-heteroaromatic ketones is herein implemented via a conceptually intuitive Weinreb amide acylative transfer of a putative difluoromethyl-carbanion. To make the strategy productive, we adopted the commercially available TMSCHF2 pronucleophile - characterized by robust chemical stability and manipulability (bp 65 °C) - which upon Lewis-base mediated activation delivers the competent CHF2-nucleophile. The synthetic protocol was carried out on pyrazole- and isoxazole-based scaffolds, and a panel of heteroaryl-DFMKs was consequently developed as potential COX-inhibitors. In this sense, the bioisosterism deducted through docking studies between the widely expressed carboxylic group (in several clinically used COX inhibitors) and the -COCHF2 motif introduced herein supports this rationale. To confirm the docking results, all compounds were tested against both COX-1 and COX-2 enzyme isoforms showing activity in the micromolar range and a good selectivity index (SI). They were also evaluated for their biocompatibility using NIH/3T3 cells to which they did not show any significant toxicity.


Asunto(s)
Isoxazoles , Cetonas , Ratones , Animales , Cetonas/química , Inhibidores de la Ciclooxigenasa/química , Pirazoles/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2 , Relación Estructura-Actividad
2.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335138

RESUMEN

Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.


Asunto(s)
Ácido Glicirretínico , Neoplasias Hepáticas , Animales , Materiales Biocompatibles/uso terapéutico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Mamíferos , Calidad de Vida
3.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364480

RESUMEN

Public health concerns associated with the potential leaching of substances from Polyethylene terephthalate (PET) packaging have been raised due to the role of phthalates as endocrine-disrupting chemicals or obesogens. In particular, changes in the environment such as pH, temperature, and irradiation can improve contaminant migration from PET food packaging. In this study, the in vitro effects of p-phthalates terephthalic acid (TPA) and dimethyl terephthalate (DMT) on murine adipocytes (3T3-L1) were evaluated using concentrations that might be obtained in adult humans exposed to contaminated sources. TPA and, in particular, DMT exposure during 3T3-L1 differentiation increased the cellular lipid content and induced adipogenic markers PPAR-γ, C/EBPß, FABP4, and FASN, starting from low nanomolar concentrations. Interestingly, the adipogenic action of TPA- and DMT-induced PPAR-γ was reverted by ICI 182,780, a specific antagonist of the estrogen receptor. Furthermore, TPA and DMT affected adipocytes' thermogenic program, reducing pAMPK and PGC-1α levels, and induced the NF-κB proinflammatory pathway. Given the observed effects of biologically relevant chronic concentrations of these p-phthalates and taking into account humans' close and constant contact with plastics, it seems appropriate that ascertaining safe levels of TPA and DMT exposure is considered a high priority.


Asunto(s)
Adipogénesis , Tereftalatos Polietilenos , Humanos , Adulto , Ratones , Animales , Tereftalatos Polietilenos/química , Adipocitos , Células 3T3-L1 , Termogénesis , PPAR gamma/metabolismo
4.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080136

RESUMEN

BACKGROUND: The consumption of foods rich in anthocyanins (ACN) have been associated with beneficial properties in chronic inflammatory disorders such as intestinal bowel diseases (IBD). These effects were attributed not only to a direct antioxidant mechanism but also to the modulation of cell redox-dependent signaling. However, ACN bioavailability is low for their poor stability in the digestive tract, so ACN gastrointestinal digestion should be considered. METHODS: To have a more realistic knowledge of the effects of ACN, we performed an in vitro simulated gastrointestinal digestion of an ACN-rich purified and standardized bilberry and blackcurrant extract (BBE), followed by an evaluation of ACN composition modification (HPLC-DAD and pH differential method) and antioxidant activity (FRAP assay). Then, we studied the effects of BBE gastrointestinal extract on Caco-2 exposed to TNF-α. RESULTS: The results confirmed the high instability of ACN in the mild alkaline environment of the small intestine (17% recovery index). However, the digested BBE maintained part of its bioactivity. Additionally, BBE gastrointestinal extract inhibited the TNF-α-induced NF-κB pathway in Caco-2 and activated the Nrf2 pathway. CONCLUSIONS: Although ACN stability is affected by gastrointestinal digestion, the anti-inflammatory and antioxidant activity of digested extracts were confirmed; thus, the loss of ACN can probably be counterweighed by their metabolites. Then, ACN introduced by diet or food supplements could represent an approach for IBD prevention.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Ribes , Antocianinas/metabolismo , Antocianinas/farmacología , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Células CACO-2 , Células Epiteliales , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Extractos Vegetales/química , Ribes/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364258

RESUMEN

Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples' phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.


Asunto(s)
Lamiaceae , Lamiaceae/química , Antioxidantes/farmacología , Antioxidantes/química , Aguas Residuales , Fenoles/química , Antiinflamatorios/farmacología , Fitoquímicos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agua
6.
Phytother Res ; 35(8): 4616-4625, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33822421

RESUMEN

The spread of SARS-CoV-2, along with the lack of targeted medicaments, encouraged research of existing drugs for repurposing. The rapid response to SARS-CoV-2 infection comprises a complex interaction of cytokine storm, endothelial dysfunction, inflammation, and pathologic coagulation. Thus, active molecules targeting multiple steps in SARS-CoV-2 lifecycle are highly wanted. Herein we explored the in silico capability of silibinin from Silybum marianum to interact with the SARS-CoV-2 main target proteins, and the in vitro effects against cytokine-induced-inflammation and dysfunction in human umbilical vein endothelial cells (HUVECs). Computational analysis revealed that silibinin forms a stable complex with SARS-CoV-2 spike protein RBD, has good negative binding affinity with Mpro, and interacts with many residues on the active site of Mpro, thus supporting its potentiality in inhibiting viral entry and replication. Moreover, HUVECs pretreatment with silibinin reduced TNF-α-induced gene expression of the proinflammatory genes IL-6 and MCP-1, as well as of PAI-1, a critical factor in coagulopathy and thrombosis, and of ET-1, a peptide involved in hemostatic vasoconstriction. Then, due to endothelium antiinflammatory and anticoagulant properties of silibinin and its capability to interact with SARS-CoV-2 main target proteins demonstrated herein, silibinin could be a strong candidate for COVID-19 management from a multitarget perspective.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Péptido Hidrolasas , SARS-CoV-2 , Silibina , COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Silibina/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
7.
Phytother Res ; 35(9): 5269-5281, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34173287

RESUMEN

The aim of study was to evaluate and compare the phytochemical profile, the antioxidant and antimicrobial properties of two standardized extracts from non-psychotropic (Δ9 -tetrahydrocannabinol ≤0.2%) Cannabis sativa L. var. fibrante rich in cannabidiol (CBD). The two extracts, namely Cannabis Fibrante Hexane Extract 1 (CFHE1) and Cannabis Fibrante Hexane Extract 2 (CFHE2), were obtained by extraction with acidified hexane from dried flowering tops as such and after hydrodistillation of the essential oil, respectively. Gas chromatographic analysis showed that cannabinoids remained the predominant class of compounds in both extracts (82.56% and 86.38%, respectively), whereas a marked depletion of the terpenes occurred. Moreover, liquid chromatographic analysis highlighted a high titer of cannabidiol acid (CBDA) and CBD in CFHE1 and CFHE2, respectively. Both extracts showed a strong and concentration-dependent antioxidant activity and a potent antimicrobial activity against both Staphylococcus aureus ATCC 6538 (MIC and MBC of 4.88 µg/ml for CFHE1, and 4.88 and 19.53 µg/ml, respectively, for CFHE2) and methicillin resistant clinical strains (MIC values between 1.22 and 9.77 µg/ml and MBC values between 4.88 and 78.13 µg/ml). Considering this, the obtained results suggest that standardized extracts of C. sativa var. fibrante could find promising applications as novel antimicrobial agents.


Asunto(s)
Cannabidiol , Cannabis , Extractos Vegetales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cannabidiol/farmacología , Dronabinol , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
8.
Phytother Res ; 35(2): 1099-1112, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33034400

RESUMEN

The purpose of this study was to evaluate the antioxidant and antimicrobial properties of two extracts from a new Chinese accession (G-309) of Cannabis sativa L. (Δ9 -tetrahydrocannabinol <0.2%) with high content of propyl side chain phytocannabinoids. Dried flowering tops, as such and after hydrodistillation of the essential oil, were extracted with acidic hexane to produce the Cannabis Chinese hexane extract 1 (CChHE1) and 2 (CChHE2), respectively. The phytochemical profile of CChHE1 and CChHE2 was investigated by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (LC-DAD-ESI-MS/MS) analyses. The antioxidant properties were assessed by several in vitro cell-free assays. The antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria and the yeast Candida albicans. Phytochemical analyses highlighted a high content of cannabidivarinic acid (CBDVA) and tetraydrocannabivarinic acid (THCVA) in CChHE1, and cannabidivarin (CBDV) and tetraydrocannabivarin (THCV) in CChHE2. Both extracts showed remarkable antioxidant activity and strong antimicrobial properties (MIC 39.06 and MBC 39.06-78.13 µg/ml) against both ATCC and methicillin-resistant clinical strains of Staphylococcus aureus. In conclusion, standardized extracts of C. sativa Chinese accession could be promising for their possible use as novel antibacterial agents for the treatment of widespread S. aureus infections.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Cannabis/química , Extractos Vegetales/química , China , Humanos
9.
Chem Biodivers ; 18(12): e2100607, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34643021

RESUMEN

In this article, we investigated the in vitro potential beneficial effects of the anthocyanin cyanidin-3-O-glucoside (C3G) on inflammation and insulin resistance markers induced by palmitic acid (PA) in human SGBS adipocytes. Results demonstrated that PA reduced insulin sensitivity in SGBS cells with a significant inhibition of Akt phosphorylation, with a higher sensitivity to PA than murine 3T3-L1 adipocytes, GLUT-1 and GLUT-4 glucose transporters and the enzyme hexokinase-II. C3G pretreatment (1-20 µM) reverted these effects. Moreover, we demonstrated, for the first time in human adipocytes, that cells exposure to PA induced gene expression of proinflammatory cytokines TNF-α, IL-6, IL-8, and MCP-1. Cells pretreatment with C3G resulted in a reduction in mRNA levels starting at very low concentrations (1 µM). In conclusion, this study highlights the effects of PA on inflammation and insulin resistance markers in human adipocytes, and confirm the role of C3G in the prevention of lipotoxicity in dysfunctional adipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Antocianinas/farmacología , Citocinas/genética , Inflamación/tratamiento farmacológico , Ácido Palmítico/farmacología , Células 3T3-L1 , Animales , Antocianinas/química , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Ratones
10.
Chem Biodivers ; 18(6): e2100185, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33860977

RESUMEN

The genus Rumex (Polygonaceae) is distributed worldwide and the different species belonging to it are used in traditional medicine. The present study aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts from different parts (roots, stems, and leaves) of Rumex roseus, a wild local Tunisian plant traditionally used as food. The phytochemical analysis on the extracts was performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI-MS; then, several in vitro cell-free assays have been used to estimate their antioxidant/free radical scavenging capability (TAC-PM, DPPH, TEAC, FRAP, ORAC, SOD-like activity, and HOCl-induced albumin degradation). Additionally, anti-inflammatory effect of these extracts was evaluated in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells. The results showed that the methanolic extracts from stems and, especially, leaves contain substantial amounts of flavones (apigenin and luteolin, together with their derivatives), while the extract from roots is characterized by the presence of tannins and quinic acid derivatives. All the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extract from roots was characterized by a remarkable activity, probably due to its different and peculiar polyphenolic composition. Furthermore, both Rumex roseus roots and stems extracts demonstrated an anti-inflammatory effect in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. roseus methanolic extracts have shown to be potential sources of bioactive compounds to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Inflamación/tratamiento farmacológico , Metanol/química , Fitoquímicos/farmacología , Rumex/química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Células CACO-2 , Bovinos , Células Cultivadas , Humanos , Ratones , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Picratos/antagonistas & inhibidores , Albúmina Sérica Bovina/antagonistas & inhibidores
11.
Arch Biochem Biophys ; 691: 108488, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32692982

RESUMEN

Obesity is a metabolic disorder characterized by excess adipose tissue, macrophages infiltration, and inflammation which in turn lead to insulin-resistance. Epidemiological evidences reported that anthocyanins possess not only high antioxidant and antiinflammatory activities, but also improve metabolic complications associated with obesity. The aim of this work was to evaluate the in vitro beneficial effects of cyanidin-3-O-glucoside (C3G) in counteracting inflammation and insulin-resistance in 3T3-L1 hypertrophic adipocytes exposed to palmitic acid (PA). In the present study murine 3T3-L1 adipocytes were pretreated with C3G for 24 h and then exposed to palmitic acid (PA) for 24 h. Real-time PCR, western blotting analysis and Oil Red O staining were applied for investigating the mechanism involved in adipocytes dysfunction. C3G pretreatment reduced lipid accumulation, PPARγ pathway and NF-κB pathway induced by PA in murine adipocytes. In addition, our data demonstrated that PA reduced insulin signaling via IRS-1 Ser307phosphorylation while C3G dose-dependently improved insulin sensitivity restoring IRS-1/PI3K/Akt pathway. Furthermore, C3G improved adiponectin mRNA levels altered by PA in 3T3-L1 murine and SGBS human adipocytes. Herein reported data demonstrate that C3G ameliorated adipose tissue dysfunction, thus suggesting new potential roles for this compound of nutritional interest in the prevention of pathological conditions linked to obesity.


Asunto(s)
Adipocitos/efectos de los fármacos , Antocianinas/farmacología , Glucósidos/farmacología , Inflamación/prevención & control , Transducción de Señal/efectos de los fármacos , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adiponectina/metabolismo , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Ratones , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Ácido Palmítico/farmacología
12.
Chem Biodivers ; 17(8): e2000345, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32501568

RESUMEN

The present study is aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts obtained from different parts of Rumex algeriensis and Rumex tunetanus, two relict species limited to the North Africa. Phytochemical analyses of these extracts were performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI/MS, and their antioxidant/free radical scavenging capability was estimated through several in vitro cell-free assays. Moreover, the anti-inflammatory potential of these extracts was demonstrated in an in vitro model of acute intestinal inflammation using differentiated Caco-2 cells. The results showed that all the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extracts from both R. algeriensis and R. tunetanus flowers, and that from R. algeriensis stems were characterized by a remarkable SOD-like and NO-scavenging activity, as well as by the capability to protect albumin against HClO-induced degradation. Furthermore, the extracts from flowers of both Rumex species, as well as R. algeriensis stems, showed an anti-inflammatory effect in intestinal epithelial cells, as demonstrated by the inhibition of TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. algeriensis and R. tunetanus have shown to be potential sources of bioactive products to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Rumex/química , Antiinflamatorios/farmacología , Células CACO-2 , Cromatografía Líquida de Alta Presión/métodos , Humanos , Metanol/química , Estrés Oxidativo/efectos de los fármacos , Rumex/clasificación , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray/métodos
13.
Phytother Res ; 33(7): 1888-1897, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31155812

RESUMEN

Increased adiposity has been associated with adipose tissue low-grade inflammation leading to insulin resistance. Adipocyte differentiation inhibitors are expected to be effective in preventing obesity and related diseases. Anthocyanins (ACNs) are associated to enhanced adipocyte function and protection from metabolic stress. Herein, we evaluated the in vitro protective effects of an ACN rich extract against palmitic acid (PA)-induced hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes. ACN extract pretreatment reduces lipid accumulation and peroxisome proliferators-activated receptor-γ protein levels induced by PA. In addition, PA induces inflammation with activation of NF-κB pathway, whereas ACN extract pretreatment dose-dependently inhibited this pathway. Furthermore, adipocyte dysfunction associated with hypertrophy induces insulin resistance by affecting phosphatidylinositol 3-kinase-protein kinase B/Akt axis, GLUT-1, and adiponectin mRNA levels. ACN extract pretreatment reverts these effects induced by PA and moreover was able to induce insulin pathway with levels higher than insulin control cells, supporting an insulin sensitizer role for ACNs. This study demonstrates a prevention potential of ACNs against obesity comorbidities, due to their protective effects against inflammation/insulin resistance in adipocytes. In addition, these results contribute to the knowledge and strategies on the evaluation of the mechanism of action of ACNs from a food source under basal and insulin resistance conditions related to obesity.


Asunto(s)
Adipocitos/efectos de los fármacos , Antocianinas/farmacología , Antiinflamatorios/farmacología , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Hipertrofia , Ratones , Ácido Palmítico
14.
Nat Prod Res ; 38(6): 916-925, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37129014

RESUMEN

Obesity is a metabolic disorder with excessive body fat accumulation, increasing incidence of chronic metabolic diseases. Hypertrophic obesity is associated with local oxidative stress and inflammation. Herein, we evaluated the in vitro activity of micromolar concentrations of α-lipoic acid (ALA) on palmitic acid (PA)-exposed murine hypertrophic 3T3-L1 adipocytes, focussing on the main molecular pathways involved in adipogenesis, inflammation, and insulin resistance. ALA, starting from 1 µM, decreased adipocytes hypertrophy, reducing PA-triggered intracellular lipid accumulation, PPAR-γ levels, and FABP4 gene expression, and counteracted PA-induced intracellular ROS levels and NF-κB activation. ALA reverted PA-induced insulin resistance, restoring PI3K/Akt axis and inducing GLUT-1 and glucose uptake, showing insulin sensitizing properties since it increased their basal levels. In conclusion, this study supports the potential effects of low micromolar ALA against hypertrophy, inflammation, and insulin resistance in adipose tissue, suggesting its important role as pharmacological supplement in the prevention of conditions linked to obesity and metabolic syndrome.


Asunto(s)
Resistencia a la Insulina , Ácido Tióctico , Animales , Ratones , Ácido Tióctico/farmacología , Ácido Palmítico/farmacología , Fosfatidilinositol 3-Quinasas , Adipocitos , Hipertrofia/inducido químicamente , Obesidad , Inflamación
15.
Fitoterapia ; 175: 105953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588905

RESUMEN

Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.


Asunto(s)
Antocianinas , Inflamación , Intestinos , Animales , Humanos , Antocianinas/administración & dosificación , Inflamación/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Dieta a Base de Plantas
16.
Arch Physiol Biochem ; 129(2): 379-386, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33021853

RESUMEN

CONTEXT: Increased free fatty acids (FFAs) levels, typical in obesity condition, can contribute to systemic lipotoxicity and inflammation adversely influencing Inflammatory Bowel Disease development and progression. Anthocyanins possess health promoting properties mainly associated to the induction of Nrf2-regulated cytoprotective proteins. OBJECTIVE: Using a novel experimental model, we evaluated the in vitro intracellular mechanisms involved in FFAs modulation of intestinal epithelial lipotoxicity and the protective effects of cyanidin-3-O-glucoside (C3G) in Caco-2 cells. RESULTS: Caco-2 exposed to palmitic acid (PA) in the serosal (basolateral) side showed a combined state of epithelial inflammation, inducing NF-κB pathway and downstream cytokines, that was reverted by C3G apical pre-treatment. In addition, PA altered intracellular redox status and induced reactive oxygen species that were reduced by C3G via the redox-sensitive Nrf2 signalling. DISCUSSION AND CONCLUSION: Results suggest that anti-inflammatory properties of anthocyanins, mediated by Nrf2, could represent an interesting tool for intestinal inflammatory disorders.


Asunto(s)
Antocianinas , Palmitatos , Humanos , Antocianinas/farmacología , Células CACO-2 , Palmitatos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Células Epiteliales , Inflamación , Ácido Palmítico/toxicidad , Glucósidos/farmacología
17.
Front Pharmacol ; 14: 1225586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614314

RESUMEN

Introduction: Obesity is a metabolic disease with an increase both in cell size (hypertrophy) and in cell number (hyperplasia) following differentiation of new adipocytes. Adipogenesis is a well-orchestrated program in which mitotic clonal expansion (MCE) occurs in the early step followed by the late terminal differentiation one. Methods: Aim of the study was to evaluate the in vitro effects of cyanidin-3-O-glucoside (C3G), an anthocyanin present in many fruits and vegetables, in the early or late phase of 3T3-L1 preadipocytes differentiation. Results: C3G exposure in the early phase of adipogenesis process induced a more marked reduction of CCAAT/enhancer-binding protein-ß (C/EBPß), peroxisome proliferator-activated receptor γ (PPAR-É£) and fatty acid synthase (Fasn) expression than late phase exposure and these effects were associated to a reduced MCE with cell cycle arrest at G0/G1 phase via p21 expression. Furthermore, C3G exposure during the early phase activated AMP-activated protein kinase (AMPK) pathway better than in the late phase promoting the enhancement of beige-like adipocytes. In fact, C3G induced thermogenic biomarkers uncoupling protein-1 (Ucp1) and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc1) and these effects were more evident during early phase exposure. Conclusion: Our data demonstrate that C3G reduces the terminal adipogenic process affecting the early phase of differentiation and inducing a thermogenic program.

18.
Food Chem Toxicol ; 181: 114107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858840

RESUMEN

Antimony (Sb) is a metalloid widely present in plastics used for food contact packaging, toys and other household items. Since Sb can be released by these plastics and come into contact with humans, health concerns have been highlighted. The effect of Sb on human tissues is yet controversial, and biochemical mechanisms of toxicity are lacking. In the present study, the effect of very low nanomolar concentrations of Sb(III), able to mimicking chronic human exposure, was evaluated in 3T3-L1 murine cells during the differentiation process. Low nanomolar Sb exposure (from 0.05 to 5 nM) induced lipid accumulation and a marked increase in C/EBP-ß and PPAR-γ levels, the master regulators of adipogenesis. The Sb-induced PPAR-γ was reverted by the estrogen receptor antagonist ICI 182,780. Additionally, Sb stimulated preadipocytes proliferation inducing G2/M phase of cell cycle and this effect was associated to reduced cell-cycle inhibitor p21 levels. In addition to these metabolic dysfunctions, Sb activated the proinflammatory NF-κB pathway and altered endoplasmic reticulum (ER) homeostasis inducing ROS increase, ER stress markers XBP-1s and pEIF2a and downstream genes, such as Grp78 and CHOP. This study, for the first time, supports obesogenic effects of low concentrations exposure of Sb during preadipocytes differentiation.


Asunto(s)
Adipogénesis , Antimonio , Humanos , Animales , Ratones , Células 3T3-L1 , Antimonio/toxicidad , Antimonio/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Adipocitos , Diferenciación Celular , Retículo Endoplásmico/metabolismo , Homeostasis , PPAR gamma/metabolismo
19.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984315

RESUMEN

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.

20.
Front Pharmacol ; 13: 809938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222027

RESUMEN

Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. New unconventional therapies based on plant derived compounds capable of preventing and/or reducing acute or chronic inflammation could represent a valid alternative for the treatment or prevention of IBDs. Cynara cardunculus L. leaves, considered a food-waste suitable as a rich source of bioactive polyphenols including luteolin and chlorogenic acid, has been reported for its positive effects in digestive tract. The aim of the present work was to evaluate the in vitro molecular mechanisms of beneficial effects of a standardized polyphenol-rich extract obtained from the leaves of Cynara cardunculus L (CCLE) against acute intestinal inflammation induced by TNF-α on intestinal epithelial Caco-2 cells. CCLE prevented TNF-α-induced NF-κB inflammatory pathway and the overexpression of IL-8 and COX-2. In addition, CCLE was able to improve basal intracellular antioxidant power in both TNF-α-unexposed or -exposed Caco-2 cells and this effect was associated to the activation of Nrf2 pathway, a master regulator of redox homeostasis affecting antioxidant and phase II detoxifying genes, stimulating an adaptive cellular response. In conclusion, our data clearly evidenced that, although considered a waste, Cynara cardunculus leaves may be used to obtain extracts rich in bioactive polyphenols potentially useful for prevention and treatment of inflammatory intestinal diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA