Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2120853119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35675426

RESUMEN

Muscle attachment sites (MASs, apodemes) in insects and other arthropods involve specialized epithelial cells, called tendon cells or tenocytes, that adhere to apical extracellular matrices containing chitin. Here, we have uncovered a function for chitin deacetylases (CDAs) in arthropod locomotion and muscle attachment using a double-stranded RNA-mediated gene-silencing approach targeted toward specific CDA isoforms in the red flour beetle, Tribolium castaneum (Tc). Depletion of TcCDA1 or the alternatively spliced TcCDA2 isoform, TcCDA2a, resulted in internal tendon cuticle breakage at the femur-tibia joint, muscle detachment from both internal and external tendon cells, and defective locomotion. TcCDA deficiency did not affect early muscle development and myofiber growth toward the cuticular MASs but instead resulted in aborted microtubule development, loss of hemiadherens junctions, and abnormal morphology of tendon cells, all features consistent with a loss of tension within and between cells. Moreover, simultaneous depletion of TcCDA1 or TcCDA2a and the zona pellucida domain protein, TcDumpy, prevented the internal tendon cuticle break, further supporting a role for force-dependent interactions between muscle and tendon cells. We propose that in T. castaneum, the absence of N-acetylglucosamine deacetylation within chitin leads to a loss of microtubule organization and reduced membrane contacts at MASs in the femur, which adversely affect musculoskeletal connectivity, force transmission, and physical mobility.


Asunto(s)
Amidohidrolasas , Proteínas de Insectos , Músculos , Tribolium , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Quitina/metabolismo , Extremidades/fisiología , Fémur , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Locomoción , Desarrollo de Músculos , Músculos/enzimología , Músculos/fisiología , Tribolium/enzimología , Tribolium/fisiología
2.
Pestic Biochem Physiol ; 194: 105496, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532355

RESUMEN

Insects must periodically replace their old cuticle/exoskeleton with a new one in a process called molting or ecdysis to allow for continuous growth through sequential developmental stages. Many RNA interference (RNAi) studies have demonstrated that certain chitinases (CHTs) play roles in this vital physiological event because knockdown of these CHT genes resulted in developmental arrest during the ensuing molting period in several insect species. In this research we analyzed the functions of group I (MaCHT5) and group II (MaCHT10) CHT genes in molting of the Japanese pine sawyer, Monochamus alternatus, an important forest pest known as a major vector of the pinewood nematode. Real-time qPCR revealed that these two CHT genes differ in their expression patterns during late stages of development. Depletion of either MaCHT5 or MaCHT10 transcripts by RNAi resulted in lethal larval-pupal and pupal-adult molting defects depending on the double-stranded RNA (dsRNA) injection timing during development. The insects were unable to shed their old cuticle and died. Furthermore, transmission electron microscopic analysis revealed that, unlike dsEGFP-treated controls, dsMaCHT5- and dsMaCHT10-treated pharate adults exhibited a failure of degradation of the endocuticular layer of their old pupal cuticle, retaining nearly intact horizontal chitinous laminae and vertical pore canal fibers. Both enzymes were indispensable for complete turnover of the chitinous old endocuticle, which is critical for insect molting. The possible functions of two spliced variants of MaCHT10, namely, MaCHT10a and MaCHT10b, are also discussed. Our results add to the knowledge base for further functional studies of insect chitin catabolism by revealing the relative importance of both MaCHT5 and MaCHT10 in chitin turnover with subtle differences in their action. These essential genes and their encoded proteins are potential targets to manipulate for controlling populations of M. alternatus and other pest insects.


Asunto(s)
Quitinasas , Escarabajos , Tribolium , Animales , Muda/genética , Tribolium/genética , Quitinasas/genética , Quitinasas/metabolismo , Quitina/metabolismo , Madera/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN
3.
PLoS Genet ; 14(3): e1007307, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29590098

RESUMEN

Insect cuticle or exoskeleton is an extracellular matrix formed primarily from two different structural biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the overlying old exoskeleton by molting fluid enzymes including epidermal chitinases. In this study we report a novel role for an epidermal endochitinase containing two catalytic domains, TcCHT7, from the red flour beetle, Tribolium castaneum, in organizing chitin in the newly forming cuticle rather than in degrading chitin present in the prior one. Recombinant TcCHT7 expressed in insect cells is membrane-bound and capable of hydrolyzing an extracellular chitin substrate, whereas in vivo, this enzyme is also released from the plasma membrane and co-localizes with chitin in the entire procuticle. RNAi of TcCHT7 reveals that this enzyme is nonessential for any type of molt or degradation of the chitinous matrix in the old cuticle. In contrast, TcCHT7 is required for maintaining the integrity of the cuticle as a compact structure of alternating electron-dense and electron-lucent laminae. There is a reduction in thickness of elytral and leg cuticles after RNAi for TcCHT7. TcCHT7 is also required for formation of properly oriented long chitin fibers inside pore canals that are vertically oriented columnar structures, which contribute to the mechanical strength of a light-weight, yet rigid, adult cuticle. The conservation of CHT7-like proteins harboring such a unique domain configuration among many insect and other arthropod species indicates a critical role for the group III class of chitinases in the higher ordered organization of chitin fibers for development of the structural integrity of many invertebrate exoskeletons.


Asunto(s)
Exoesqueleto , Quitinasas/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Insectos/metabolismo , Tribolium/enzimología , Animales , Dominio Catalítico , Quitina/metabolismo , Quitinasas/química , Quitinasas/genética , Evolución Molecular , Espacio Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Proteínas de Insectos/química , Proteínas de Insectos/genética , ARN Bicatenario/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 293(18): 6985-6995, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29567838

RESUMEN

Roles in the organization of the cuticle (exoskeleton) of two chitin deacetylases (CDAs) belonging to group I, TcCDA1 and TcCDA2, as well as two alternatively spliced forms of the latter, TcCDA2a and TcCDA2b, from the red flour beetle, Tribolium castaneum, were examined in different body parts using transmission EM and RNAi. Even though all TcCDAs are co-expressed in cuticle-forming cells from the hardened forewing (elytron) and ventral abdomen, as well as in the softer hindwing and dorsal abdomen, there are significant differences in the tissue specificity of expression of the alternatively spliced transcripts. Loss of either TcCDA1 or TcCDA2 protein by RNAi causes abnormalities in organization of chitinous horizontal laminae and vertical pore canals in all regions of the procuticle of both the hard and soft cuticles. Simultaneous RNAi for TcCDA1 and TcCDA2 produces the most serious abnormalities. RNAi of either TcCDA2a or TcCDA2b affects cuticle integrity to some extent. Following RNAi, there is accumulation of smaller disorganized fibers in both the horizontal laminae and pore canals, indicating that TcCDAs play a critical role in elongation/organization of smaller nanofibers into longer fibers, which is essential for structural integrity of both hard/thick and soft/thin cuticles. Immunolocalization of TcCDA1 and TcCDA2 proteins and effects of RNAi on their accumulation indicate that these two proteins function in concert exclusively in the assembly zone in a step involving the higher order organization of the procuticle.


Asunto(s)
Amidohidrolasas/metabolismo , Escamas de Animales/metabolismo , Quitina/metabolismo , Proteínas de Insectos/metabolismo , Tribolium/enzimología , Empalme Alternativo , Amidohidrolasas/genética , Escamas de Animales/ultraestructura , Animales , Regulación Enzimológica de la Expresión Génica , Proteínas de Insectos/genética , Microscopía Electrónica de Transmisión , Simulación del Acoplamiento Molecular , Fenotipo , Interferencia de ARN , Alas de Animales/metabolismo , Alas de Animales/ultraestructura
5.
Adv Exp Med Biol ; 1142: 83-114, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31102243

RESUMEN

Chitin, the extracellular matrix polysaccharide of insects and arthropods is widely distributed in nature in all kingdoms of life and serves a variety of functions. After synthesis by membrane-bound chitin synthases, it is extensively remodeled before incorporation into divergent matrices with wide-ranging physical and biological properties. This chapter discusses the properties of a variety of insect enzymes and proteins involved in this process. Chitin remodeling involves chitin synthases, which make the nascent chitin chains, and chitin deacetylases that partially deacetylate some of the N-acetylglucosamine residues either randomly or sequentially to yield local chitosan-like regions. Other proteins secreted into the procuticle or the midgut help in the assembly of single chitin chains into larger crystalline aggregates that measure in a few 100 nanometers. They are further embedded in a complex matrix of cuticular proteins or become associated with proteins containing chitin-binding domains to constitute the laminar procuticle or the lattice-like peritrophic matrix. During molting, previously formed laminar cuticle or PM are decrystallized/depolymerized to unmask the chitin chains, which then are degraded by a mixture of chitinolytic enzymes consisting of chitinases and N-acetylglucosaminidases present in molting fluid or in gut secretions. Some of the degradation products may be recycled for the synthesis of new matrices. We present a model of chitin synthesis, assembly, and degradation and the roles of these chitin-remodeling enzymes in this overall process.


Asunto(s)
Quitina/química , Quitinasas/fisiología , Hexosaminidasas/fisiología , Proteínas de Insectos/fisiología , Insectos/fisiología , Animales , Muda
6.
Arch Insect Biochem Physiol ; 98(2): e21454, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29479741

RESUMEN

This microreview stems from the Second Symposium on Insect Molecular Toxicology and Chitin Metabolism held at Shanxi University in Taiyuan, China (June 27 to 30, 2017) at the institute for Applied Biology headed by Professor Enbo Ma and Professor Jianzhen Zhang.


Asunto(s)
Quitina Sintasa/metabolismo , Quitina/metabolismo , Insectos/metabolismo , Animales
7.
PLoS Genet ; 11(2): e1004963, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664770

RESUMEN

Insect cuticle is composed mainly of structural proteins and the polysaccharide chitin. The CPR family is the largest family of cuticle proteins (CPs), which can be further divided into three subgroups based on the presence of one of the three presumptive chitin-binding sequence motifs denoted as Rebers-Riddiford (R&R) consensus sequence motifs RR-1, RR-2 and RR-3. The TcCPR27 protein containing the RR-2 motif is one of the most abundant CPs present both in the horizontal laminae and in vertical pore canals in the procuticle of rigid cuticle found in the elytron of the red flour beetle, Tribolium castaneum. Depletion of TcCPR27 by RNA interference (RNAi) causes both unorganized laminae and pore canals, resulting in malformation and weakening of the elytron. In this study, we investigated the function(s) of another CP, TcCPR4, which contains the RR-1 motif and is easily extractable from elytra after RNAi to deplete the level of TcCPR27. Transcript levels of the TcCPR4 gene are dramatically increased in 3 d-old pupae when adult cuticle synthesis begins. Immunohistochemical studies revealed that TcCPR4 protein is present in the rigid cuticles of the dorsal elytron, ventral abdomen and leg but not in the flexible cuticles of the hindwing and dorsal abdomen of adult T. castaneum. Immunogold labeling and transmission electron microscopic analyses revealed that TcCPR4 is predominantly localized in pore canals and regions around the apical plasma membrane protrusions into the procuticle of rigid adult cuticles. RNAi for TcCPR4 resulted in an abnormal shape of the pore canals with amorphous pore canal fibers (PCFs) in their lumen. These results support the hypothesis that TcCPR4 is required for achieving proper morphology of the vertical pore canals and PCFs that contribute to the assembly of a cuticle that is both lightweight and rigid.


Asunto(s)
Quitina/genética , Proteínas de Insectos/genética , Motivos de Nucleótidos/genética , Interferencia de ARN , Abdomen/crecimiento & desarrollo , Animales , Quitina/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/ultraestructura , Microscopía Electrónica de Transmisión , Pupa , Tribolium/genética
8.
PLoS Genet ; 10(8): e1004537, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25144557

RESUMEN

Our recent study on the functional analysis of the Knickkopf protein from T. castaneum (TcKnk), indicated a novel role for this protein in protection of chitin from degradation by chitinases. Knk is also required for the laminar organization of chitin in the procuticle. During a bioinformatics search using this protein sequence as the query, we discovered the existence of a small family of three Knk-like genes (including the prototypical TcKnk) in the T. castaneum genome as well as in all insects with completed genome assemblies. The two additional Knk-like genes have been named TcKnk2 and TcKnk3. Further complexity arises as a result of alternative splicing and alternative polyadenylation of transcripts of TcKnk3, leading to the production of three transcripts (and by inference, three proteins) from this gene. These transcripts are named TcKnk3-Full Length (TcKnk3-FL), TcKnk3-5' and TcKnk3-3'. All three Knk-family genes appear to have essential and non-redundant functions. RNAi for TcKnk led to developmental arrest at every molt, while down-regulation of either TcKnk2 or one of the three TcKnk3 transcripts (TcKnk3-3') resulted in specific molting arrest only at the pharate adult stage. All three Knk genes appear to influence the total chitin content at the pharate adult stage, but to variable extents. While TcKnk contributes mostly to the stability and laminar organization of chitin in the elytral and body wall procuticles, proteins encoded by TcKnk2 and TcKnk3-3' transcripts appear to be required for the integrity of the body wall denticles and tracheal taenidia, but not the elytral and body wall procuticles. Thus, the three members of the Knk-family of proteins perform different essential functions in cuticle formation at different developmental stages and in different parts of the insect anatomy.


Asunto(s)
Genoma de los Insectos , Familia de Multigenes/genética , Filogenia , Tribolium/genética , Animales , Quitina/genética , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Drosophila , Proteínas de Drosophila/genética , Larva/genética , Datos de Secuencia Molecular , Muda , Interferencia de ARN
9.
Int J Mol Sci ; 18(4)2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28346351

RESUMEN

Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.


Asunto(s)
Quitina Sintasa/química , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Annu Rev Entomol ; 61: 177-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982439

RESUMEN

Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.


Asunto(s)
Quitina/fisiología , Control de Insectos , Insectos/fisiología , Animales , Quitina/genética , Insectos/genética
11.
Dev Biol ; 399(2): 315-24, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25614237

RESUMEN

Yellow protein (dopachrome conversion enzyme, DCE) is involved in the melanin biosynthetic pathway that significantly accelerates pigmentation reactions in insects. Recent studies have suggested that the insect yellow genes represent a rapidly evolving gene family generating functionally diverse paralogs, but the exact physiological functions of several yellow genes are still not understood. To study the function(s) of one of the yellow genes, yellow-e (TcY-e), in the red flour beetle, Tribolium castaneum, we performed real-time PCR to analyze its developmental and tissue-specific expression, and utilized immunohistochemistry to identify the localization of the TcY-e protein in adult cuticle. Injection of double-stranded RNA for TcY-e (dsTcY-e) into late instar larvae had no effect on larval-pupal molting or pupal development. The pupal cuticle, including that lining the setae, gin traps and urogomphi, underwent normal tanning. Adult cuticle tanning including that of the head, mandibles and legs viewed through the translucent pupal cuticle was initiated on schedule (pupal days 4-5), indicating that TcY-e is not required for pupal or pharate adult cuticle pigmentation in T. castaneum. The subsequent pupal-adult molt, however, was adversely affected. Although pupal cuticle apolysis and slippage were evident, some of the adults (~25%) were unable to shed their exuvium and died entrapped in their pupal cuticle. In addition, the resulting adults rapidly became highly desiccated. Interestingly, both the failure of the pupal-adult molt and desiccation-induced mortality were prevented by maintaining the dsTcY-e-treated insects at 100% relative humidity (rh). However, when the high humidity-rescued adults were removed from 100% rh and transferred to 50% rh, they rapidly dehydrated and died, whereas untreated beetles thrived throughout development at 50% rh. We also observed that the body color of the high humidity-rescued dsTcY-e-adults was slightly darker than that of control animals. These results support the hypothesis that TcY-e has a role not only in normal body pigmentation in T. castaneum adults but also has a vital waterproofing function.


Asunto(s)
Deshidratación/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oxidorreductasas Intramoleculares/metabolismo , Pigmentación/fisiología , Tribolium/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Análisis por Conglomerados , Deshidratación/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humedad , Inmunohistoquímica , Datos de Secuencia Molecular , Filogenia , Pigmentación/genética , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Tribolium/crecimiento & desarrollo
12.
PLoS Genet ; 9(1): e1003268, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382702

RESUMEN

Molting, or the replacement of the old exoskeleton with a new cuticle, is a complex developmental process that all insects must undergo to allow unhindered growth and development. Prior to each molt, the developing new cuticle must resist the actions of potent chitinolytic enzymes that degrade the overlying old cuticle. We recently disproved the classical dogma that a physical barrier prevents chitinases from accessing the new cuticle and showed that the chitin-binding protein Knickkopf (Knk) protects the new cuticle from degradation. Here we demonstrate that, in Tribolium castaneum, the protein Retroactive (TcRtv) is an essential mediator of this protective effect of Knk. TcRtv localizes within epidermal cells and specifically confers protection to the new cuticle against chitinases by facilitating the trafficking of TcKnk into the procuticle. Down-regulation of TcRtv resulted in entrapment of TcKnk within the epidermal cells and caused molting defects and lethality in all stages of insect growth, consistent with the loss of TcKnk function. Given the ubiquity of Rtv and Knk orthologs in arthropods, we propose that this mechanism of new cuticle protection is conserved throughout the phylum.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Drosophila , Proteínas de Insectos , Proteínas de la Membrana , Muda , Tribolium , Animales , Quitina/biosíntesis , Quitina/genética , Quitinasas/genética , Quitinasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de la Membrana/genética , Muda/genética , Muda/fisiología , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Tribolium/enzimología , Tribolium/genética , Tribolium/crecimiento & desarrollo
13.
PLoS Genet ; 8(4): e1002682, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570623

RESUMEN

Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins, we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for the hindwings) of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa) and TcCPR18 (20 kDa), which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for each gene into penultimate or last instar larvae had no effect on larval-larval, larval-pupal, or pupal-adult molting. The elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype. Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the red flour beetle, and that both proteins are required for morphogenesis of the beetle's elytra.


Asunto(s)
Escarabajos/genética , Proteínas de Insectos/genética , Morfogénesis/genética , Alas de Animales , Secuencia de Aminoácidos , Animales , Escarabajos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Fenotipo , Interferencia de ARN , Alas de Animales/crecimiento & desarrollo
14.
Proc Natl Acad Sci U S A ; 108(41): 17028-33, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21930896

RESUMEN

During each molting cycle of insect development, synthesis of new cuticle occurs concurrently with the partial degradation of the overlying old exoskeleton. Protection of the newly synthesized cuticle from molting fluid enzymes has long been attributed to the presence of an impermeable envelope layer that was thought to serve as a physical barrier, preventing molting fluid enzymes from accessing the new cuticle and thereby ensuring selective degradation of only the old one. In this study, using the red flour beetle, Tribolium castaneum, as a model insect species, we show that an entirely different and unexpected mechanism accounts for the selective action of chitinases and possibly other molting enzymes. The molting fluid enzyme chitinase, which degrades the matrix polysaccharide chitin, is not excluded from the newly synthesized cuticle as previously assumed. Instead, the new cuticle is protected from chitinase action by the T. castaneum Knickkopf (TcKnk) protein. TcKnk colocalizes with chitin in the new cuticle and organizes it into laminae. Down-regulation of TcKnk results in chitinase-dependent loss of chitin, severe molting defects, and lethality at all developmental stages. The conservation of Knickkopf across insect, crustacean, and nematode taxa suggests that its critical roles in the laminar ordering and protection of exoskeletal chitin may be common to all chitinous invertebrates.


Asunto(s)
Quitina/metabolismo , Proteínas de Insectos/metabolismo , Tribolium/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quitina Sintasa/metabolismo , Quitinasas/metabolismo , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Genes de Insecto , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Muda/genética , Muda/fisiología , Filogenia , Interferencia de ARN , Homología de Secuencia de Aminoácido , Tribolium/genética , Tribolium/crecimiento & desarrollo
15.
Insect Biochem Mol Biol ; 166: 104087, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295884

RESUMEN

Chitinases (CHT) comprise a large gene family in insects and have been classified into at least eleven subgroups. Many studies involving RNA interference (RNAi) have demonstrated that depletion of group I (CHT5s) and group II (CHT10s) CHT transcripts causes lethal molting arrest in several insect species including the red flour beetle, Tribolium castaneum, presumably due to failure of degradation of chitin in their old cuticle. In this study we investigated the functions of CHT5 and CHT10 in turnover of chitinous cuticle in T. castaneum during embryonic and post-embryonic molting stages. RNAi and transmission electron microscopic (TEM) analyses indicate that CHT10 is required for cuticular chitin degradation at each molting period analyzed, while CHT5 is essential for pupal-adult molting only. We further analyzed the functions of these genes during embryogenesis in T. castaneum. Real-time qPCR analysis revealed that peak expression of CHT10 occurred prior to that of CHT5 during embryonic development as has been observed at post-embryonic molting periods in several other insect species. With immunogold-labeling TEM analysis using a fluorescein isothiocyanate-conjugated chitin-binding domain protein (FITC-CBD) probe, chitin was detected in the serosal cuticle but not in any other regions of the eggshell including the chorion and vitelline membrane layers. Injection of double-stranded RNA (dsRNA) for CHT5 (dsCHT5), CHT10 (dsCHT10) or their co-injection (dsCHT5/10) into mature adult females had no effect on their fecundity and the resulting embryos developed normally inside the egg. There were no obvious differences in the morphology of the outer chorion, inner chorion and vitelline membrane among eggs from these dsRNA-treated females. However, unlike dsCHT5 eggs, dsCHT10 and dsCHT5/10 eggs exhibited failure of turnover of the serosal cuticle in which the horizontal chitinous laminae remained intact, resulting in lethal embryo hatching defects. These results indicate that group I CHT5 is essential for pupal-adult molting, whereas group II CHT10 plays an essential role in cuticular chitin degradation in T. castaneum during both embryonic hatching and all of the post-embryonic molts. CHT10 can serve in place of CHT5 in chitin degradation, except during the pupal-adult molt when both enzymes are indispensable to complete eclosion.


Asunto(s)
Quitinasas , Escarabajos , Tribolium , Femenino , Animales , Tribolium/metabolismo , Escarabajos/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Quitina/metabolismo , Muda/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
16.
Insect Biochem Mol Biol ; 168: 104113, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527710

RESUMEN

Ticks, ectoparasitic arachnids, are prominent disease vectors impacting both humans and animals. Their unique blood-feeding phase involves significant abdominal cuticle expansion, sharing certain similarities with insects. However, vital aspects, including the mechanisms of cuticle expansion, changes in cuticular protein composition, chitin synthesis, and cuticle function, remain poorly understood. Given that the cuticle expansion is crucial for complete engorgement of the ticks, addressing these knowledge gaps is essential. Traditional tick research involving live animal hosts has inherent limitations, such as ethical concerns and host response variability. Artificial membrane feeding systems provide an alternative approach, offering controlled experimental conditions and reduced ethical dilemmas. These systems enable precise monitoring of tick attachment, feeding parameters, and pathogen acquisition. Despite the existence of various methodologies for artificial tick-feeding systems, there is a pressing need to enhance their reproducibility and effectiveness. In this context, we introduce an improved tick-feeding system that incorporates adjustments related to factors like humidity, temperature, and blood-feeding duration. These refinements markedly boost tick engorgement rates, presenting a valuable tool for in-depth investigations into tick cuticle biology and facilitating studies on molting. This refined system allows for collecting feeding ticks at specific stages, supporting research on tick cuticle biology, and evaluating chemical agents' efficacy in the engorgement process.


Asunto(s)
Sustitutos Sanguíneos , Ixodes , Humanos , Animales , Reproducibilidad de los Resultados , Biología
17.
Insect Biochem Mol Biol ; 159: 103984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391088

RESUMEN

Most insects reproduce by laying eggs that have an eggshell/chorion secreted by follicle cells, which serves as a protective barrier for developing embryos. Thus, eggshell formation is vital for reproduction. Insect yellow family genes encode for secreted extracellular proteins that perform different, context-dependent functions in different tissues at various stages of development involving, for example, cuticle/eggshell coloration and morphology, molting, courtship behavior and embryo hatching. In this study we investigated the function of two of this family's genes, yellow-g (TcY-g) and yellow-g2 (TcY-g2), on the formation and morphology of the eggshell of the red flour beetle, Tribolium castaneum. Real-time PCR analysis revealed that both TcY-g and TcY-g2 were specifically expressed in the ovarioles of adult females. Loss of function produced by injection of double-stranded RNA (dsRNA) for either TcY-g or TcY-g2 gene resulted in failure of oviposition. There was no effect on maternal survival. Ovaries dissected from those dsRNA-treated females exhibited ovarioles containing not only developing oocytes but also mature eggs in their egg chambers. However, the ovulated eggs were collapsed and ruptured, resulting in swollen lateral oviducts and calyxes. TEM analysis showed that lateral oviducts were filled with electron-dense material, presumably from some cellular content leakage out of the collapsed eggs. In addition, morphological abnormalities in lateral oviduct epithelial cells and the tubular muscle sheath were evident. These results support the hypothesis that both TcY-g and TcY-g2 proteins are required for maintaining the rigidity and integrity of the chorion, which is critical for resistance to mechanical stress and/or rehydration during ovulation and egg activation in the oviducts of T. castaneum. Because Yellow-g and Yellow-g2 are highly conserved among insect species, both genes are potential targets for development of gene-based insect pest population control methods.


Asunto(s)
Proteínas de Insectos , Tribolium , Animales , Femenino , Fertilidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Oogénesis , Oviposición , Tribolium/metabolismo
18.
Commun Biol ; 5(1): 518, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641660

RESUMEN

Microbial lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of crystalline polysaccharides including chitin and cellulose. The discovery of a large assortment of LPMO-like proteins widely distributed in insect genomes suggests that they could be involved in assisting chitin degradation in the exoskeleton, tracheae and peritrophic matrix during development. However, the physiological functions of insect LPMO-like proteins are still undetermined. To investigate the functions of insect LPMO15 subgroup I-like proteins (LPMO15-1s), two evolutionarily distant species, Tribolium castaneum and Locusta migratoria, were chosen. Depletion by RNAi of T. castaneum TcLPMO15-1 caused molting arrest at all developmental stages, whereas depletion of the L. migratoria LmLPMO15-1, prevented only adult eclosion. In both species, LPMO15-1-deficient animals were unable to shed their exuviae and died. TEM analysis revealed failure of turnover of the chitinous cuticle, which is critical for completion of molting. Purified recombinant LPMO15-1-like protein from Ostrinia furnacalis (rOfLPMO15-1) exhibited oxidative cleavage activity and substrate preference for chitin. These results reveal the physiological importance of catalytically active LPMO15-1-like proteins from distant insect species and provide new insight into the enzymatic mechanism of cuticular chitin turnover during molting.


Asunto(s)
Quitina , Oxigenasas de Función Mixta , Animales , Quitina/metabolismo , Carbohidratos de la Dieta , Insectos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Muda , Polisacáridos/metabolismo
19.
Cell Mol Life Sci ; 67(2): 201-16, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19816755

RESUMEN

Insect chitinases belong to family 18 glycosylhydrolases that hydrolyze chitin by an endo-type of cleavage while retaining the anomeric beta-(1-->4) configuration of products. There are multiple genes encoding chitinases and chitinase-like proteins in all insect species studied using bioinformatics searches. These chitinases differ in size, domain organization, physical, chemical and enzymatic properties, and in patterns of their expression during development. There are also differences in tissue specificity of expression. Based on a phylogenetic analysis, insect chitinases and chitinase-like proteins have been classified into several different groups. Results of RNA interference experiments demonstrate that at least some of these chitinases belonging to different groups serve non-redundant functions and are essential for insect survival, molting or development. Chitinases have been utilized for biological control of insect pests on transgenic plants either alone or in combination with other insecticidal proteins. Specific chitinases may prove to be useful as biocontrol agents and/or as vaccines.


Asunto(s)
Quitinasas , Control de Insectos , Insectos/enzimología , Secuencia de Aminoácidos , Animales , Quitinasas/química , Quitinasas/clasificación , Quitinasas/genética , Secuencia Conservada , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Plaguicidas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato
20.
Proc Natl Acad Sci U S A ; 105(18): 6650-5, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18436642

RESUMEN

The biological functions of individual members of the large family of chitinase-like proteins from the red flour beetle, Tribolium castaneum (Tc), were examined by using gene-specific RNAi. One chitinase, TcCHT5, was found to be required for pupal-adult molting only. A lethal phenotype was observed when the transcript level of TcCHT5 was down-regulated by injection of TcCHT5-specific dsRNA into larvae. The larvae had metamorphosed into pupae and then to pharate adults but did not complete adult eclosion. Specific knockdown of transcripts for another chitinase, TcCHT10, which has multiple catalytic domains, prevented embryo hatch, larval molting, pupation, and adult metamorphosis, indicating a vital role for TcCHT10 during each of these processes. A third chitinase-like protein, TcCHT7, was required for abdominal contraction and wing/elytra extension immediately after pupation but was dispensable for larval-larval molting, pupation, and adult eclosion. The wing/elytra abnormalities found in TcCHT7-silenced pupae were also manifest in the ensuing adults. A fourth chitinase-like protein, TcIDGF4, exhibited no chitinolytic activity but contributed to adult eclosion. No phenotypic effects were observed after knockdown of transcripts for several other chitinase-like proteins, including imaginal disk growth factor IDGF2. These data indicate functional specialization among insect chitinase family genes, primarily during the molting process, and provide a biological rationale for the presence of a large assortment of chitinase-like proteins.


Asunto(s)
Quitinasas/genética , Quitinasas/metabolismo , Genes de Insecto , Familia de Multigenes , Interferencia de ARN , Tribolium/enzimología , Tribolium/genética , Abdomen , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/enzimología , Muda/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Óvulo/efectos de los fármacos , Óvulo/enzimología , Fenotipo , Pupa/efectos de los fármacos , Pupa/enzimología , ARN Bicatenario/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tribolium/embriología , Tribolium/crecimiento & desarrollo , Alas de Animales/efectos de los fármacos , Alas de Animales/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA