RESUMEN
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Asunto(s)
Cilios , Proteínas Hedgehog , Transducción de Señal , Cilios/metabolismo , Cilios/fisiología , Humanos , Animales , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPP/metabolismo , Comunicación Celular , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/genéticaRESUMEN
Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.
Asunto(s)
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Microscopía por Crioelectrón , Dimerización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transducción de SeñalRESUMEN
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Asunto(s)
Cilios , Proteínas Quinasas Dependientes de AMP Cíclico , Quinasa 2 del Receptor Acoplado a Proteína-G , Proteínas Hedgehog , Transducción de Señal , Receptor Smoothened , Pez Cebra , Animales , Cilios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Hedgehog/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Pez Cebra/metabolismo , Fosforilación , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células 3T3 NIHRESUMEN
Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration1. Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma2. Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models3-5, a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results-combined with signalling studies and molecular dynamics simulations-delineate the structural basis for PTCH1-SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors.
Asunto(s)
Membrana Celular/química , Proteínas Hedgehog/agonistas , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Esteroles/farmacología , Animales , Sitios de Unión , Técnicas Biosensibles , Dominio Catalítico/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Proteínas Hedgehog/metabolismo , Ligandos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Receptor Patched-1/antagonistas & inhibidores , Receptor Patched-1/metabolismo , Conformación Proteica , Estabilidad Proteica , Anticuerpos de Cadena Única/inmunología , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/química , Esteroles/química , Esteroles/metabolismo , Proteínas de Xenopus/químicaRESUMEN
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Receptor Smoothened/fisiología , Animales , Animales Modificados Genéticamente , Dominio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Embrión no Mamífero , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas/genética , Transducción de Señal/genética , Receptor Smoothened/metabolismo , Pez CebraRESUMEN
Hedgehog signaling specifies tissue patterning and renewal, and pathway components are commonly mutated in certain malignancies. Although central to ensuring appropriate pathway activity in all Hedgehog-responsive cells, how the transporter-like receptor Patched1 regulates the seven-transmembrane protein Smoothened remains mysterious, partially due to limitations in existing tools and experimental systems. Here we employ direct, real-time, biochemical and physiology-based approaches to monitor Smoothened activity in cellular and in vitro contexts. Patched1-Smoothened coupling is rapid, dynamic, and can be recapitulated without cilium-specific proteins or lipids. By reconstituting purified Smoothened in vitro, we show that cholesterol within the bilayer is sufficient for constitutive Smoothened activation. Cholesterol effects occur independently of the lipid-binding Smoothened extracellular domain, a region that is dispensable for Patched1-Smoothened coupling. Finally, we show that Patched1 specifically requires extracellular Na+ to regulate Smoothened in our assays, raising the possibility that a Na+ gradient provides the energy source for Patched1 catalytic activity. Our work suggests a hypothesis wherein Patched1, chemiosmotically driven by the transmembrane Na+ gradient common to metazoans, regulates Smoothened by shielding its heptahelical domain from cholesterol, or by providing an inhibitor that overrides this cholesterol activation.
Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/metabolismo , Sodio/metabolismo , Animales , Membrana Celular/genética , Colesterol/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Dominios Proteicos , Células Sf9 , Receptor Smoothened/genética , SpodopteraRESUMEN
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents â¼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas Hedgehog , Meduloblastoma , Receptor Patched-1 , Proteínas de Pez Cebra , Pez Cebra , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Sistemas CRISPR-Cas/genéticaRESUMEN
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.
RESUMEN
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
RESUMEN
Much of our current understanding of Hedgehog signal transduction derives from studies involving intact cells and organisms. Here we describe the use of cell-free and reconstituted systems to study a key step in Hedgehog signal transduction: the activation of SMOOTHENED by membrane lipids. These methods can be adapted to study other steps in Hedgehog signal transduction, particularly those that occur at the membrane.
Asunto(s)
Receptores de Superficie Celular/metabolismo , Sistema Libre de Células , Proteínas Hedgehog , Receptores Acoplados a Proteínas G , Transducción de Señal , Receptor SmoothenedRESUMEN
Communication between PATCHED1 (PTCH1) and SMOOTHENED (SMO) is fundamental to Hedgehog (Hh) signal transduction in development and disease. We describe a real-time cell-based SMO functional assay based on SMO activity-dependent changes in cellular cAMP concentrations. This assay is capable of detecting changes in SMO conformation within minutes of PTCH1 inactivation by Hh ligands. As a result, it expands the range of experimental perturbations that can be used to dissect PTCH1-SMO communication, enabling a deeper mechanistic understanding of a longstanding mystery in Hh signal transduction.
Asunto(s)
Receptor Smoothened/metabolismo , AMP Cíclico , Proteínas Hedgehog , Ligandos , Receptores Acoplados a Proteínas G , Transducción de SeñalRESUMEN
The Hedgehog (Hh) cascade is central to development, tissue homeostasis and cancer. A pivotal step in Hh signal transduction is the activation of glioma-associated (GLI) transcription factors by the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO). How SMO activates GLI remains unclear. Here we show that SMO uses a decoy substrate sequence to physically block the active site of the cAMP-dependent protein kinase (PKA) catalytic subunit (PKA-C) and extinguish its enzymatic activity. As a result, GLI is released from phosphorylation-induced inhibition. Using a combination of in vitro, cellular and organismal models, we demonstrate that interfering with SMO-PKA pseudosubstrate interactions prevents Hh signal transduction. The mechanism uncovered echoes one used by the Wnt cascade, revealing an unexpected similarity in how these two essential developmental and cancer pathways signal intracellularly. More broadly, our findings define a mode of GPCR-PKA communication that may be harnessed by a range of membrane receptors and kinases.
Asunto(s)
Antineoplásicos , Proteínas de Drosophila , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The capsaicin receptor, TRPV1, contributes to thermal and chemical sensitivity of primary afferent neurons of the pain pathway, but many aspects of its regulation remain elusive. In this issue of Neuron, Lishko et al. describe a high-resolution structure of a TRPV1 domain, providing insight into the molecular basis of channel modulation while revealing new functions for a widely expressed protein interaction fold.
Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/fisiología , Animales , Estructura MolecularRESUMEN
Transient receptor potential (TRP) ion channels have been implicated in detecting chemical, thermal, and mechanical stimuli in organisms ranging from mammals to Caenorhabditis elegans. It is well established that TRPA1 detects and mediates behavioral responses to chemical irritants. However, the role of TRPA1 in detecting thermal and mechanical stimuli is controversial. To further clarify the functions of TRPA1 channels in vertebrates, we analyzed their roles in zebrafish. The two zebrafish TRPA1 paralogs are expressed in sensory neurons and are activated by several chemical irritants in vitro. High-throughput behavioral analyses of trpa1a and trpa1b mutant larvae indicate that TRPA1b is necessary for behavioral responses to these chemical irritants. However, TRPA1 paralogs are not required for behavioral responses to temperature changes or for mechanosensory hair cell function in the inner ear or lateral line. These results support a role for zebrafish TRPA1 in chemical but not thermal or mechanical sensing, and establish a high-throughput system to identify genes and small molecules that modulate chemosensation, thermosensation, and mechanosensation.
Asunto(s)
Células Quimiorreceptoras/fisiología , Células Ciliadas Auditivas/fisiología , Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Termorreceptores/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Conducta Animal/fisiología , Línea Celular , Células Cultivadas , Femenino , Tamización de Portadores Genéticos , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Humanos , Canales Iónicos/genética , Larva/genética , Larva/fisiología , Datos de Secuencia Molecular , Planta de la Mostaza/toxicidad , Mutación , Aceites de Plantas/toxicidad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/genéticaRESUMEN
Here we report the discovery of oncogenic mutations in the Hedgehog and mitogen-activated protein kinase (MAPK) pathways in over 80% of ameloblastomas, locally destructive odontogenic tumors of the jaw, by genomic analysis of archival material. Mutations in SMO (encoding Smoothened, SMO) are common in ameloblastomas of the maxilla, whereas BRAF mutations are predominant in tumors of the mandible. We show that a frequently occurring SMO alteration encoding p.Leu412Phe is an activating mutation and that its effect on Hedgehog-pathway activity can be inhibited by arsenic trioxide (ATO), an anti-leukemia drug approved by the US Food and Drug Administration (FDA) that is currently in clinical trials for its Hedgehog-inhibitory activity. In a similar manner, ameloblastoma cells harboring an activating BRAF mutation encoding p.Val600Glu are sensitive to the BRAF inhibitor vemurafenib. Our findings establish a new paradigm for the diagnostic classification and treatment of ameloblastomas.
Asunto(s)
Ameloblastoma/genética , Neoplasias Maxilomandibulares/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Receptores Acoplados a Proteínas G/genética , Ameloblastoma/tratamiento farmacológico , Ameloblastoma/patología , Antineoplásicos/farmacología , Trióxido de Arsénico , Arsenicales/farmacología , Proliferación Celular/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Indoles/farmacología , Neoplasias Maxilomandibulares/tratamiento farmacológico , Neoplasias Maxilomandibulares/patología , Óxidos/farmacología , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Receptor Smoothened , Sulfonamidas/farmacología , Células Tumorales Cultivadas , VemurafenibRESUMEN
Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo) by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine-rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs.
Asunto(s)
Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esteroles/metabolismo , Aminoácidos/metabolismo , Animales , Sitios de Unión , Secuencia Conservada , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Células 3T3 NIH , Receptores Patched , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptor Smoothened , Esteroles/química , Relación Estructura-Actividad , Proteínas Wnt/metabolismoRESUMEN
Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche.
Asunto(s)
Evolución Biológica , Frío , Activación del Canal Iónico , Canales Catiónicos TRPC/metabolismo , Sensación Térmica/fisiología , Secuencia de Aminoácidos , Animales , Anuros/fisiología , Datos de Secuencia Molecular , Neuronas Aferentes/fisiología , Ratas , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPC/químicaRESUMEN
TRP cation channels function as cellular sensors in uni- and multicellular eukaryotes. Despite intensive study, the mechanisms of TRP channel activation by chemical or physical stimuli remain poorly understood. To identify amino acid residues crucial for TRP channel gating, we developed an unbiased, high-throughput genetic screen in yeast that uncovered rare, constitutively active mutants of the capsaicin receptor, TRPV1. We show that mutations within the pore helix domain dramatically increase basal channel activity and responsiveness to chemical and thermal stimuli. Mutation of corresponding residues within two related TRPV channels leads to comparable effects on their activation properties. Our data suggest that conformational changes in the outer pore region are critical for determining the balance between open and closed states, providing evidence for a general role for this domain in TRP channel activation.
Asunto(s)
Pruebas Genéticas/métodos , Activación del Canal Iónico/fisiología , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Animales , Capsaicina/farmacología , Línea Celular , Calor , Humanos , Riñón/citología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mutagénesis/fisiología , Oocitos/fisiología , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína , Ratas , Saccharomyces cerevisiae , Estimulación Química , Relación Estructura-Actividad , Canales Catiónicos TRPV/fisiología , Xenopus laevisRESUMEN
FKBP12-rapamycin associated protein (FRAP, also known as mTOR or RAFT) is the founding member of the phosphatidylinositol kinase-related kinase family and functions as a sensor of physiological signals that regulate cell growth. Signals integrated by FRAP include nutrients, cAMP levels, and osmotic stress, and cellular processes affected by FRAP include transcription, translation, and autophagy. The mechanisms underlying the integration of such diverse signals by FRAP are largely unknown. Recently, FRAP has been reported to be regulated by mitochondrial dysfunction and depletion of ATP levels. Here we show that exposure of cells to hyperosmotic conditions (and to glucose-deficient growth medium) results in rapid and reversible dissipation of the mitochondrial proton gradient. These results suggest that the ability of FRAP to mediate osmotic stress response (and glucose deprivation response) is by means of an intermediate mitochondrial dysfunction. We also show that in addition to cytosolic FRAP a large portion of FRAP associates with the mitochondrial outer membrane. The results support the existence of a stress-sensing module consisting of mitochondria and mitochondrial outer membrane-associated FRAP. This module allows the cell to integrate a variety of stress signals that affect mitochondrial function and regulate a growth checkpoint involving p70 S6 kinase.