Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Pharm ; 20(2): 1247-1255, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36563318

RESUMEN

Endothelin receptor A (ETA), a class A G protein-coupled receptor (GPCR), is a promising tumor-associated antigen due to its close association with the progression and metastasis of many types of cancer, such as colorectal, breast, lung, ovarian, and prostate cancer. However, only small-molecule drugs have been developed as ETA antagonists with anticancer effects. In a previous study, we identified an antibody (AG8) with highly selective binding to human ETA through screening of a human naïve immune antibody library. Although both in vitro and in vivo experiments indicated that the identified AG8 had anticancer effects, there is a need for improvement in biochemical and physicochemical properties such as the ETA binding affinity, thermostability, and productivity. In this study, we engineered the framework regions of AG8 and isolated an anti-ETA antibody (MJF1) exhibiting significantly improved thermostability and ETA binding affinity. Subsequently, our previously isolated PFc29, an Fc variant with an enhanced pH-dependent human FcRn binding profile, was introduced to MJF1, and the resulting Fc-engineered anti-ETA antibody (MJF1-PFc29) inhibited the proliferation of tumor cells comparably to MJF1 and showed a 4.2-fold increased serum half-life in human FcRn transgenic mice. Moreover, MJF1-PFc29 elicited higher tumor growth inhibition in colorectal cancer xenograft mice compared to MJF1. Our results demonstrate that the engineered human anti-ETA antibody MJF1-PFc29 has great therapeutic potential and high antitumor potency against various types of cancers including colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ingeniería de Proteínas , Masculino , Humanos , Ratones , Animales , Receptores Fc/metabolismo , Ratones Transgénicos , Receptor de Endotelina A , Neoplasias Colorrectales/tratamiento farmacológico
2.
Fish Shellfish Immunol ; 138: 108807, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169112

RESUMEN

The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , Animales , SARS-CoV-2/metabolismo , Anticuerpos Antivirales , Pandemias , Anticuerpos Neutralizantes
3.
Proteomics ; 22(1-2): e2100171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561969

RESUMEN

Human leukocyte antigen (HLA) class I has more than 18,000 alleles, each of which binds to a set of unique peptides from the cellular degradome. Deciphering the interaction between antigenic peptides and HLA proteins is crucial for understanding immune responses in autoimmune diseases and cancer. In this study, we aimed to characterize the peptidome that binds to HLA-A*33:03, which is one of the most prevalent HLA-A alleles in the Northeast Asian population, but poorly studied. For this purpose, we analyzed the HLA-A*33:03 monoallelic B cell line using immunoprecipitation of HLA-A and peptide complexes, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, we identified 5731 unique peptides that were associated with HLA A*33:03, and experimentally validated the affinity of 40 peptides for HLA-A*33:03 and their stability in HLA A*33:03-peptides complexes. To our knowledge, this study represents the largest dataset of peptides associated with HLA-A*33:03. Also, this is the first study in which HLA A*33:03-associated peptides were experimentally validated.


Asunto(s)
Antígenos HLA-A , Espectrometría de Masas en Tándem , Cromatografía Liquida , Epítopos , Humanos , Inmunoprecipitación
4.
Artículo en Inglés | MEDLINE | ID: mdl-31451494

RESUMEN

ACC-1 is a plasmid-encoded class C ß-lactamase identified in clinical isolates of Klebsiella pneumoniae, Proteus mirabilis, Salmonella enterica, and Escherichia coli ACC-1-producing bacteria are susceptible to cefoxitin, whereas they are resistant to oxyimino cephalosporins. Here, we depict crystal structures of apo ACC-1, adenylylated ACC-1, and acylated ACC-1 complexed with cefotaxime and cefoxitin. ACC-1 has noteworthy structural alterations in the R2 loop, the Ω loop, and the Phe119 loop located along the active-site rim. The adenylate covalently bonded to the nucleophilic serine reveals a tetrahedral phosphorus mimicking the deacylation transition state. Cefotaxime in ACC-1 has a proper conformation for the substrate-assisted catalysis in that its C-4 carboxylate and N-5 nitrogen are adequately located to facilitate the deacylation reaction. In contrast, cefoxitin in ACC-1 has a distinct conformation, in which those functional groups cannot contribute to catalysis. Furthermore, the orientation of the deacylating water relative to the acyl carbonyl group in ACC-1 is unfavorable for nucleophilic attack.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Catálisis , Cefotaxima/farmacología , Cefoxitina/farmacología , Cefalosporinas/farmacología , Pruebas de Sensibilidad Microbiana , Nitrógeno/química , Plásmidos/genética , beta-Lactamasas/química , beta-Lactamasas/genética
5.
Proc Natl Acad Sci U S A ; 112(40): 12372-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392564

RESUMEN

Intercellular bridges are a conserved feature of spermatogenesis in mammalian germ cells and derive from arresting cell abscission at the final stage of cytokinesis. However, it remains to be fully understood how germ cell abscission is arrested in the presence of general cytokinesis components. The TEX14 (testis-expressed gene 14) protein is recruited to the midbody and plays a key role in the inactivation of germ cell abscission. To gain insights into the structural organization of TEX14 at the midbody, we have determined the crystal structures of the EABR [endosomal sorting complex required for transport (ESCRT) and ALIX-binding region] of CEP55 bound to the TEX14 peptide (or its chimeric peptides) and performed functional characterization of the CEP55-TEX14 interaction by multiexperiment analyses. We show that TEX14 interacts with CEP55-EABR via its AxGPPx3Y (Ala793, Gly795, Pro796, Pro797, and Tyr801) and PP (Pro803 and Pro804) sequences, which together form the AxGPPx3YxPP motif. TEX14 competitively binds to CEP55-EABR to prevent the recruitment of ALIX, which is a component of the ESCRT machinery with the AxGPPx3Y motif. We also demonstrate that a high affinity and a low dissociation rate of TEX14 to CEP55, and an increase in the local concentration of TEX14, cooperatively prevent ALIX from recruiting ESCRT complexes to the midbody. The action mechanism of TEX14 suggests a scheme of how to inactivate the abscission of abnormal cells, including cancer cells.


Asunto(s)
Células Germinativas/metabolismo , Testículo/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Expresión Génica , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/genética , Testículo/citología , Factores de Transcripción/genética
6.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29382046

RESUMEN

Intrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins. However, conventional biochemical and biophysical methods for analyzing proteins, such as X-ray crystallography, have difficulty in characterizing the features of IDPs because they lack an ordered three-dimensional structure. Here, we present biochemical and biophysical studies on nucleolar phosphoprotein 140 (Nopp140), which mostly consists of disordered regions, during its interaction with casein kinase 2 (CK2), which plays a central role in cell growth. Surface plasmon resonance and electron paramagnetic resonance studies were performed to characterize the interaction between Nopp140 and CK2. A single-molecule fluorescence resonance energy transfer study revealed conformational change in Nopp140 during its interaction with CK2. These studies on Nopp140 can provide a good model system for understanding the molecular function of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Proteínas Nucleares/química , Fosfoproteínas/química , Animales , Quinasa de la Caseína II/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica
7.
Artículo en Inglés | MEDLINE | ID: mdl-28242658

RESUMEN

Nucleotides were effective in inhibiting the class C ß-lactamase CMY-10. IMP was the most potent competitive inhibitor, with a Ki value of 16.2 µM. The crystal structure of CMY-10 complexed with GMP or IMP revealed that nucleotides fit into the R2 subsite of the active site with a unique vertical binding mode where the phosphate group at one terminus is deeply bound in the subsite and the base at the other terminus faces the solvent.


Asunto(s)
Enterobacter aerogenes/enzimología , Guanosina Monofosfato/química , Inosina Monofosfato/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo , Dominio Catalítico/fisiología , Enterobacter aerogenes/genética , Pruebas de Sensibilidad Microbiana
8.
J Antimicrob Chemother ; 72(3): 735-743, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999057

RESUMEN

Objectives: : Investigation into the adenylylation of the nucleophilic serine in AmpC BER and CMY-10 extended-spectrum class C ß-lactamases. Methods: : The formation and the stability of the adenylate adduct were examined by X-ray crystallography and MS. Inhibition assays for kinetic parameters were performed by monitoring the hydrolytic activity of AmpC BER and CMY-10 using nitrocefin as a reporter substrate. The effect of adenosine 5'-(P-acetyl)monophosphate (acAMP) on the MIC of ceftazidime was tested with four Gram-negative clinical isolates. Results: : The crystal structures and MS analyses confirmed the acAMP-mediated adenylylation of the nucleophilic serine in AmpC BER and CMY-10. acAMP inhibited AmpC BER and CMY-10 through the adenylylation of the nucleophilic serine, which could be modelled as a two-step mechanism. The initial non-covalent binding of acAMP to the active site is followed by the covalent attachment of its AMP moiety to the nucleophilic serine. The inhibition efficiencies ( k inact / K I ) of acAMP against AmpC BER and CMY-10 were determined to be 320 and 140 M -1 s -1 , respectively. The combination of ceftazidime and acAMP reduced the MIC of ceftazidime against the tested bacteria. Conclusions: : Our structural and kinetic studies revealed the detailed mechanism of adenylylation of the nucleophilic serine and may serve as a starting point for the design of novel class C ß-lactamase inhibitors on the basis of the nucleotide scaffold.


Asunto(s)
Antibacterianos/farmacología , Serina/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Proteínas Bacterianas/metabolismo , Ceftazidima/farmacología , Cristalografía por Rayos X , Cinética , Pruebas de Sensibilidad Microbiana
9.
Biochem Biophys Res Commun ; 477(2): 181-7, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27297113

RESUMEN

Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Fosfoproteínas/química , Fosfoproteínas/ultraestructura , Sitios de Unión , Quinasa de la Caseína II/química , Quinasa de la Caseína II/ultraestructura , Activación Enzimática , Proteínas Intrínsecamente Desordenadas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 110(48): 19360-5, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218616

RESUMEN

Protein kinase CK2 is a ubiquitous kinase that can phosphorylate hundreds of cellular proteins and plays important roles in cell growth and development. Deregulation of CK2 is related to a variety of human cancers, and CK2 is regarded as a suppressor of apoptosis; therefore, it is a target of anticancer therapy. Nucleolar phosphoprotein 140 (Nopp140), which is an intrinsically disordered protein, interacts with CK2 and inhibits the latter's catalytic activity in vitro. Interestingly, the catalytic activity of CK2 is recovered in the presence of d-myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6). IP6 is widely distributed in animal cells, but the molecular mechanisms that govern its cellular functions in animal cells have not been completely elucidated. In this study, the crystal structure of CK2 in complex with IP6 showed that the lysine-rich cluster of CK2 plays an important role in binding to IP6. The biochemical experiments revealed that a Nopp140 fragment (residues 568-596) and IP6 competitively bind to the catalytic subunit of CK2 (CK2α), and phospho-Ser574 of Nopp140 significantly enhances its interaction with CK2α. Substitutions of K74E, K76E, and K77E in CK2α significantly reduced the interactions of CK2α with both IP6 and the Nopp140-derived peptide. Our study gives an insight into the regulation of CK2. In particular, our work suggests that CK2 activity is inhibited by Nopp140 and reactivated by IP6 by competitive binding at the substrate recognition site of CK2.


Asunto(s)
Quinasa de la Caseína II/química , Quinasa de la Caseína II/metabolismo , Regulación de la Expresión Génica/fisiología , Sustancias Macromoleculares/química , Modelos Moleculares , Proteínas Nucleares/química , Fosfoproteínas/química , Ácido Fítico/química , Sustitución de Aminoácidos , Cristalización , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ácido Fítico/metabolismo , Conformación Proteica , Difracción de Rayos X
11.
Biophys J ; 107(7): 1601-8, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296312

RESUMEN

In Alzheimer's disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aß) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aß of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aß oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aß oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aß oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/farmacología , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Ratones , Fragmentos de Péptidos/metabolismo , Porosidad , Estructura Secundaria de Proteína , alfa-Sinucleína/farmacología , Proteínas tau/farmacología
12.
J Adv Res ; 57: 135-147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37061215

RESUMEN

INTRODUCTION: Apocynin (Apo), an NADPH oxidase (NOX) inhibitor, has been widely used to treat various inflammatory diseases. However, the therapeutic effects of Apo on benign prostatic hyperplasia (BPH), a multifactorial disease associated with chronic inflammation and hormone imbalance, remain unknown. OBJECTIVES: The link between androgen signaling, reactive oxygen species (ROS), and prostate cell proliferation may contribute to the pathogenesis of BPH; therefore, the aim of this study was to identify the specific signaling pathway involved and to demonstrate whether the anti-oxidant Apo plays a role in the prevention and treatment of BPH. METHODS: Ingenuity pathway analysis and si-RNA transfection were conducted to demonstrate the androgen receptor (AR) and NOX4 linkage in BPH. Pathological markers of BPH were measured by H&E staining, immunoblotting, ELISA, qRT-PCR, and immunofluorescence to examine the effect of Apo. Rats stimulated with testosterone and BPH-1 cells were used as BPH models. RESULTS: AR and NOX4 network-mediated oxidative stress was upregulated in the BPH model. Next, we examined the effects of Apo on oxidative stress and chronic prostatic inflammation in BPH mouse models. In a testosterone-induced BPH rat model, Apo alleviated pathological prostate enlargement and suppressed androgen/AR signaling. Apo suppressed the upregulation of proinflammatory markers and promoted the expression of anti-oxidant factors. Furthermore, Apo regulated the TGF-ß/Glut9/activin pathway and macrophage programming. In BPH-1 cells, Apo suppressed AR-mediated proliferation and upregulation of TGFB and NOX4 expression by alleviating oxidative stress. Apo activated anti-oxidant and anti-inflammatory systems and regulated macrophage polarization in BPH-1 cells. AR knockdown partially abolished the beneficial effects of Apo in prostate cells, indicating AR-dependent effects of Apo. CONCLUSION: In contrast with existing BPH therapies, Apo may provide a new application for prostatic disease treatment, especially for BPH, by targeting the AR/TGF-ß/NOX4 signaling pathway.


Asunto(s)
Acetofenonas , Andrógenos , Hiperplasia Prostática , Ratones , Masculino , Humanos , Animales , Ratas , Receptores Androgénicos , Antioxidantes , Hiperplasia , Próstata , Hiperplasia Prostática/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Testosterona , Proliferación Celular , NADPH Oxidasa 4
13.
Ir J Med Sci ; 193(1): 51-56, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37450256

RESUMEN

BACKGROUND: It is difficult to predict the expected survival after lumbar instrumented surgery for metastases owing to the difference among different cancer origins and the relatively short survival after surgery. AIMS: The aim of this study is to analyze the postoperative survival period of lumbar spinal metastasis patients who underwent lumbar instrumented surgery. METHODS: Data were collected from the Korean National Health Insurance Review and Assessment Service database. Patients who underwent lumbar spinal surgery with instrumentation between January 2011 and December 2015 for metastatic lumbar diseases were reviewed. The mean postoperative survival period of patients with metastatic lumbar cancer according to each primary cancer type was evaluated. RESULTS: A total of 628 patients were enrolled and categorized according to primary cancer type. The overall median survival rate was 1.11±1.30 years. The three most prevalent primary cancer groups were lung, hepatobiliary, and colorectal cancers, presenting relatively short postoperative survival rates (0.93±1.25, 0.74±0.75 and 0.74±0.88 years, respectively). The best postoperative survival period was observed in breast cancer (2.23±1.83 years), while urinary tract cancer showed the shortest postoperative survival period (0.59±0.69 years). CONCLUSION: The postoperative survival period of patients with lumbar metastatic spinal tumors according to different primary cancers after instrumented fusion was ˃1 year overall, with differences according to different primary origins. This result may provide information regarding the expected postoperative survival after instrumented surgery for lumbar spinal metastases.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Fusión Vertebral , Neoplasias de la Columna Vertebral , Humanos , Vértebras Lumbares , Estudios de Cohortes , Estudios Retrospectivos , Resultado del Tratamiento
14.
Protein Expr Purif ; 88(2): 190-5, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23321066

RESUMEN

Human serotonin receptor 3A (5-HT3A) is a ligand-gated ion channel regulated by serotonin. A fusion protein (P9-5-HT3A) of 5-HT3A with the P9 protein, a major envelope protein of bacteriophage phi6, was highly expressed in the membrane fraction of Escherichia coli, and the expressed protein was purified to homogeneity using an affinity chromatography. P9-5-HT3A was observed as mixed oligomers in detergents. The purified P9-5-HT3A was efficiently reconstituted into proteoliposomes, and the serotonin-dependent ion-channel activity of P9-5-HT3A was observed by measuring the increased fluorescence of Fluo-3 attributed to the formation of a complex with the Ca(2+) ions released from the proteoliposomes. Alanine substitution for Trp178 of 5-HT3A abolished the serotonin-dependent ion-channel activity, confirming the importance of Trp178 as a ligand-binding site. Furthermore, the ion-channel activity of the reconstituted P9-5-HT3A was effectively blocked by treatment with ondansetron, an antagonist of 5-HT3A. The bacterial expression system of human 5-HT3A and the proteoliposomes reconstituted with 5-HT3A would provide biophysical and structural analyses of 5-HT3A.


Asunto(s)
Proteolípidos/metabolismo , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Calcio/metabolismo , Cromatografía de Afinidad , Escherichia coli/genética , Expresión Génica , Humanos , Receptores de Serotonina 5-HT3/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Serotonina/metabolismo , Regulación hacia Arriba , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/aislamiento & purificación , Proteínas de la Matriz Viral/metabolismo
15.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354581

RESUMEN

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant known as Omicron has caused a rapid increase in recent global patients with coronavirus infectious disease 2019 (COVID-19). To overcome the COVID-19 Omicron variant, production of a recombinant spike receptor binding domain (RBD) is vital for developing a subunit vaccine or a neutralizing antibody. Although bacterial expression has many advantages in the production of recombinant proteins, the spike RBD expressed in a bacterial system experiences a folding problem related to disulfide bond formation. In this study, the soluble Omicron RBD was obtained by a disulfide isomerase-assisted periplasmic expression system in Escherichia coli. The Omicron RBD purified from E. coli was very well recognized by anti-SARS-CoV-2 antibodies, sotrovimab (S309), and CR3022, which were previously reported to bind to various SARS-CoV-2 variants. In addition, the kinetic parameters of the purified Omicron RBD upon binding to the human angiotensin-converting enzyme 2 (ACE2) were similar to those of the Omicron RBD produced in the mammalian expression system. These results suggest that an E. coli expression system would be suitable to produce functional and correctly folded spike RBDs of the next emerging SARS-CoV-2 variants quickly and inexpensively.

16.
Exp Mol Med ; 54(11): 1850-1861, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36319752

RESUMEN

The pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc. Moreover, in a cynomolgus monkey model, trastuzumab-PFc29 displayed a superior pharmacokinetic profile to that of both trastuzumab-YTE and trastuzumab-LS, which contain the well-validated serum half-life extension Fcs YTE (M252Y/S254T/T256E) and LS (M428L/N434S), respectively. Furthermore, the introduction of two identified mutations of PFc29 (Q311R/M428L) into the model antibodies enhanced both complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity activity, which are triggered by the association between IgG Fc and Fc binding ligands and are critical for clearing cancer cells. In addition, the effector functions could be turned off by combining the two mutations of PFc29 with effector function-silencing mutations, but the antibodies maintained their excellent pH-dependent human FcRn binding profile. We expect our Fc variants to be an excellent tool for enhancing the pharmacokinetic profiles and potencies of various therapeutic antibodies and Fc-fusion proteins.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Inmunoglobulina G , Ratones , Animales , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Macaca fascicularis/metabolismo , Semivida , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones Transgénicos , Mutación , Trastuzumab/uso terapéutico , Trastuzumab/genética
17.
Comput Struct Biotechnol J ; 19: 145-152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33425247

RESUMEN

AmpC BER is an extended-spectrum (ES) class C ß-lactamase with a two-amino-acid insertion in the H10 helix region located at the boundary of the active site compared with its narrow spectrum progenitor. The crystal structure of the wild-type AmpC BER revealed that the insertion widens the active site by restructuring the flexible H10 helix region, which is the structural basis for its ES activity. Besides, two sulfates originated from the crystallization solution were observed in the active site. The presence of sulfate-binding subsites, together with the recognition of ring-structured chemical scaffolds by AmpC BER, led us to perform in silico molecular docking experiments with halisulfates, natural products isolated from marine sponge. Inspired by the snug fit of halisulfates within the active site, we demonstrated that halisulfate 3 and 5 significantly inhibit ES class C ß-lactamases. Especially, halisulfate 5 is comparable to avibactam in terms of inhibition efficiency; it inhibits the nitrocefin-hydrolyzing activity of AmpC BER with a Ki value of 5.87 µM in a competitive manner. Furthermore, halisulfate 5 displayed moderate and weak inhibition activities against class A and class B/D enzymes, respectively. The treatment of ß-lactamase inhibitors (BLIs) in combination with ß-lactam antibiotics is a working strategy to cope with infections by pathogens producing ES ß-lactamases. Considering the emergence and dissemination of enzymes insensitive to clinically-used BLIs, the broad inhibition spectrum and structural difference of halisulfates would be used to develop novel BLIs that can escape the bacterial resistance mechanism mediated by ß-lactamases.

18.
Exp Mol Med ; 53(9): 1437-1448, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34588605

RESUMEN

Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the ß-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin ßA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Antagonistas de los Receptores de la Endotelina A/farmacología , Receptor de Endotelina A/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Antineoplásicos Inmunológicos/química , Células CHO , Línea Celular Tumoral , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Antagonistas de los Receptores de la Endotelina A/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ingeniería de Proteínas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Agric Food Chem ; 68(21): 5873-5879, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32367716

RESUMEN

Oxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from Pseudomonas putida (SB2) for enhanced quantum yield. Of the resulting SB2 variants, KOFP-7 exhibited a significantly improved quantum yield (0.61) compared to other reported engineered FbFPs, which was even higher than that of enhanced GFP (EGFP, 0.60), with significantly enhanced tolerance against a strong reducing agent.


Asunto(s)
Proteínas Bacterianas/química , Dinitrocresoles/metabolismo , Proteínas Luminiscentes/química , Pseudomonas putida/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fluorescencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pseudomonas putida/química , Pseudomonas putida/genética
20.
J Korean Neurosurg Soc ; 63(5): 607-613, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32883056

RESUMEN

OBJECTIVE: Spontaneous intracranial hemorrhage is a life-threatening disease, and non-lesional spontaneous intraparenchymal hemorrhage (nIPH) and aneurysmal subarachnoid hemorrhage (aSAH) are the leading causes of spontaneous intracranial hemorrhage. Only a few studies have assessed the association between prior physical activity or triggering events and the occurrence of nIPH or aSAH. The purpose of this study is to investigate the role of specific physical activities and triggering events in the occurrence of nIPH and aSAH. METHODS: We retrospectively reviewed 824 consecutive patients with spontaneous intracranial hemorrhage between January 2010 and December 2018. Among the 824 patients, 132 patients were excluded due to insufficient clinical data and other etiologies of spontaneous intracranial hemorrhage. The medical records of 692 patients were reviewed, and the following parameters were assessed : age, sex, history of hypertension, smoking, history of stroke, use of antiplatelet or anticoagulation agents, season and time of onset, physical activities performed according to the metabolic equivalents, and triggering event at onset. Events that suddenly raised the blood pressure such as sudden postural changes, defecation or urination, sexual intercourse, unexpected emotional stress, sauna bath, and medical examination were defined as triggering events. These clinical data were compared between the nIPH and aSAH groups. RESULTS: Both nIPH and aSAH most commonly occurred during non-strenuous physical activity, and there was no significant difference between the two groups (p=0.524). Thirty-two patients (6.6%) in the nIPH group and 39 patients (8.1%) in the aSAH group experienced triggering events at onset, and there was a significant difference between the two groups (p=0.034). The most common triggering events were defecation or urination in both groups. CONCLUSION: Specific physical activity dose no affect the incidence of nIPH and aSAH. The relationship between the occurrence of intracranial hemorrhage and triggering events is higher in aSAH than nIPH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA