Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(5): 1803-1821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115695

RESUMEN

PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Programas Informáticos , Algoritmos
2.
J Magn Reson Imaging ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400805

RESUMEN

BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

3.
J Neurooncol ; 156(3): 645-653, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35043276

RESUMEN

PURPOSE: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS: Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS: This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imagen por Resonancia Magnética , Macrófagos Asociados a Tumores , Adulto , Apoferritinas/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
4.
BMC Cardiovasc Disord ; 22(1): 435, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203125

RESUMEN

BACKGROUND: Polypharmacy in patients with cardiovascular diseases (CVDs) has been linked to several adverse outcomes. This study aimed to investigate the pattern of medication use and prevalence of polypharmacy among CVDs patients in Iran. METHOD: We used the baseline data of the Pars cohort study (PCS). The participants were asked to bring their medication bags; then, the medications were classified using the Anatomical Therapeutic Chemical classification. Polypharmacy was defined as using five or more medications concurrently. Poisson regression modeling was applied. The adjusted prevalence ratios (PR) and its 95% confidence interval (CI) were estimated. RESULTS: Totally, 9262 participants were enrolled in the PCS, of whom 961 had CVDs. The prevalence of polypharmacy in participants with and without CVDs was 38.9% and 7.1%, respectively. The highest prevalence of polypharmacy (51.5%) was among obese patients. Abnormal waist-hip ratio (PR: 2.79; 95% CI 1.57-4.94), high socioeconomic status (PR: 1.65; 95% CI 1.07-2.54), tobacco-smoking (PR: 1.35; 95% CI 1.00-1.81), patients with more than three co-morbidities (PR: 1.41; 95% CI 1.30-1.53), high physical activity (PR: 0.66; 95% CI 0.45-0.95), use of opiate ever (PR: 0.46; 95% CI 0.26-0.82), and healthy overweight subjects (PR: 0.22; 95% CI 0.12-0.39) were associated with polypharmacy. Cardiovascular drugs (76.1%), drugs acting on blood and blood-forming organs (50.4%), and alimentary tract and metabolism drugs (33.9%) were the most frequently used drugs. Agents acting on the renin-angiotensin system were the mostly used cardiovascular system drugs among men and those above 60 years old, while beta-blocking agents were mostly prevalent among cardiovascular system drugs in women with CVDs. CONCLUSION: Given the high prevalence of polypharmacy among CVDs patients, and subsequent complications, programs to educate both physicians and patients to prevent this issue is crucial.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Alcaloides Opiáceos , Fármacos Cardiovasculares/efectos adversos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Irán/epidemiología , Masculino , Persona de Mediana Edad , Polifarmacia , Prevalencia
5.
Semin Cancer Biol ; 46: 158-181, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28823533

RESUMEN

Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), ß-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.


Asunto(s)
Dieta/tendencias , Epigénesis Genética , Proteínas de Neoplasias/genética , Neoplasias/dietoterapia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/prevención & control , Transducción de Señal/efectos de los fármacos
6.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339326

RESUMEN

In recent years, significant strides have been made in the field of neuro-oncology imaging, contributing to our understanding and management of brain tumors [...].

7.
Clin Cancer Res ; 30(2): 255-256, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37982809

RESUMEN

In this CCR Translations, we discuss pharmacologic ascorbate as a novel therapeutic for glioblastoma (GBM). Aberrant iron metabolism in GBM can be assessed noninvasively by MRI and exploited to potentially improve the efficacy of chemoradiotherapy. We contextualize the study's results and discuss the next steps to further develop this paradigm. See related article by Petronek et al., p. 283.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Antineoplásicos/uso terapéutico , Quimioradioterapia/métodos , Hierro , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38724204

RESUMEN

BACKGROUND AND PURPOSE: Tumor segmentation is essential in surgical and treatment planning and response assessment and monitoring in pediatric brain tumors, the leading cause of cancer-related death among children. However, manual segmentation is time-consuming and has high interoperator variability, underscoring the need for more efficient methods. After training, we compared 2 deep-learning-based 3D segmentation models, DeepMedic and nnU-Net, with pediatric-specific multi-institutional brain tumor data based on multiparametric MR images. MATERIALS AND METHODS: Multiparametric preoperative MR imaging scans of 339 pediatric patients (n = 293 internal and n = 46 external cohorts) with a variety of tumor subtypes were preprocessed and manually segmented into 4 tumor subregions, ie, enhancing tumor, nonenhancing tumor, cystic components, and peritumoral edema. After training, performances of the 2 models on internal and external test sets were evaluated with reference to ground truth manual segmentations. Additionally, concordance was assessed by comparing the volume of the subregions as a percentage of the whole tumor between model predictions and ground truth segmentations using the Pearson or Spearman correlation coefficients and the Bland-Altman method. RESULTS: The mean Dice score for nnU-Net internal test set was 0.9 (SD, 0.07) (median, 0.94) for whole tumor; 0.77 (SD, 0.29) for enhancing tumor; 0.66 (SD, 0.32) for nonenhancing tumor; 0.71 (SD, 0.33) for cystic components, and 0.71 (SD, 0.40) for peritumoral edema, respectively. For DeepMedic, the mean Dice scores were 0.82 (SD, 0.16) for whole tumor; 0.66 (SD, 0.32) for enhancing tumor; 0.48 (SD, 0.27) for nonenhancing tumor; 0.48 (SD, 0.36) for cystic components, and 0.19 (SD, 0.33) for peritumoral edema, respectively. Dice scores were significantly higher for nnU-Net (P ≤ .01). Correlation coefficients for tumor subregion percentage volumes were higher (0.98 versus 0.91 for enhancing tumor, 0.97 versus 0.75 for nonenhancing tumor, 0.98 versus 0.80 for cystic components, 0.95 versus 0.33 for peritumoral edema in the internal test set). Bland-Altman plots were better for nnU-Net compared with DeepMedic. External validation of the trained nnU-Net model on the multi-institutional Brain Tumor Segmentation Challenge in Pediatrics (BraTS-PEDs) 2023 data set revealed high generalization capability in the segmentation of whole tumor, tumor core (a combination of enhancing tumor, nonenhancing tumor, and cystic components), and enhancing tumor with mean Dice scores of 0.87 (SD, 0.13) (median, 0.91), 0.83 (SD, 0.18) (median, 0.89), and 0.48 (SD, 0.38) (median, 0.58), respectively. CONCLUSIONS: The pediatric-specific data-trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors.

9.
AJNR Am J Neuroradiol ; 45(4): 475-482, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453411

RESUMEN

BACKGROUND AND PURPOSE: Response on imaging is widely used to evaluate treatment efficacy in clinical trials of pediatric gliomas. While conventional criteria rely on 2D measurements, volumetric analysis may provide a more comprehensive response assessment. There is sparse research on the role of volumetrics in pediatric gliomas. Our purpose was to compare 2D and volumetric analysis with the assessment of neuroradiologists using the Brain Tumor Reporting and Data System (BT-RADS) in BRAF V600E-mutant pediatric gliomas. MATERIALS AND METHODS: Manual volumetric segmentations of whole and solid tumors were compared with 2D measurements in 31 participants (292 follow-up studies) in the Pacific Pediatric Neuro-Oncology Consortium 002 trial (NCT01748149). Two neuroradiologists evaluated responses using BT-RADS. Receiver operating characteristic analysis compared classification performance of 2D and volumetrics for partial response. Agreement between volumetric and 2D mathematically modeled longitudinal trajectories for 25 participants was determined using the model-estimated time to best response. RESULTS: Of 31 participants, 20 had partial responses according to BT-RADS criteria. Receiver operating characteristic curves for the classification of partial responders at the time of first detection (median = 2 months) yielded an area under the curve of 0.84 (95% CI, 0.69-0.99) for 2D area, 0.91 (95% CI, 0.80-1.00) for whole-volume, and 0.92 (95% CI, 0.82-1.00) for solid volume change. There was no significant difference in the area under the curve between 2D and solid (P = .34) or whole volume (P = .39). There was no significant correlation in model-estimated time to best response (ρ = 0.39, P >.05) between 2D and whole-volume trajectories. Eight of the 25 participants had a difference of ≥90 days in transition from partial response to stable disease between their 2D and whole-volume modeled trajectories. CONCLUSIONS: Although there was no overall difference between volumetrics and 2D in classifying partial response assessment using BT-RADS, further prospective studies will be critical to elucidate how the observed differences in tumor 2D and volumetric trajectories affect clinical decision-making and outcomes in some individuals.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf , Resultado del Tratamiento
10.
J Imaging Inform Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514595

RESUMEN

Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.

11.
Neurooncol Adv ; 6(1): vdad172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221978

RESUMEN

Background: Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods: An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results: There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions: Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.

12.
Neuro Oncol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769022

RESUMEN

MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumor from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.

13.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446044

RESUMEN

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Masculino , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Estudios Retrospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/diagnóstico , Aprendizaje Automático
14.
Artículo en Inglés | MEDLINE | ID: mdl-38884276

RESUMEN

PURPOSE: Sinonasal malignancies (SNMs) adversely impact patients' quality of life (QOL) and are frequently identified at an advanced stage. Because these tumors are rare, there are few studies that examine the specific QOL areas that are impacted. This knowledge would help improve the care of these patients. METHODS: In this prospective, multi-institutional study, 273 patients with SNMs who underwent definitive treatment with curative intent were evaluated. We used the University of Washington Quality of Life (UWQOL) instrument over 5 years from diagnosis to identify demographic, treatment, and disease-related factors that influence each of the 12 UWQOL subdomains from baseline to 5 -years post-treatment. RESULTS: Multivariate models found endoscopic resection predicted improved pain (vs. nonsurgical treatment CI 2.4, 19.4, p = 0.01) and appearance versus open (CI 27.0, 35.0, p < 0.001) or combined (CI 10.4, 17.1, p < 0.001). Pterygopalatine fossa involvement predicted worse swallow (CI -10.8, -2.4, p = 0.01) and pain (CI -17.0, -4.0, p < 0.001). Neck dissection predicted worse swallow (CI -14.8, -2.8, p < 0.001), taste (CI -31.7, -1.5, p = 0.02), and salivary symptoms (CI -28.4, -8.6, p < 0.001). Maxillary involvement predicted worse chewing (CI 9.8, 33.2; p < 0.001) and speech (CI -21.8, -5.4, p < 0.001) relative to other sites. Advanced T stage predicted worse anxiety (CI -13.0, -2.0, p = 0.03). CONCLUSIONS: Surgical approach, management of cervical disease, tumor extent, and site of involvement impacted variable UWQOL symptom areas. Endoscopic resection predicted better pain, appearance, and chewing compared with open. These results may aid in counseling patients regarding potential QOL expectations in their SNM treatment and recovery course.

15.
Nat Med ; 30(5): 1320-1329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480922

RESUMEN

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Asunto(s)
Receptores ErbB , Glioblastoma , Inmunoterapia Adoptiva , Subunidad alfa2 del Receptor de Interleucina-13 , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Persona de Mediana Edad , Masculino , Receptores Quiméricos de Antígenos/inmunología , Femenino , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Adulto , Anciano , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Inyecciones Espinales , Dosis Máxima Tolerada
16.
Artículo en Inglés | MEDLINE | ID: mdl-38926092

RESUMEN

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.ABBREVIATIONS: BTIP = Brain Tumor Imaging Protocol; CE = Contrast-Enhancing; CNS = Central Nervous System; CR = Complete Response; ECOG = Eastern Cooperative Oncology Group; HGG = High-Grade Glioma; IDH = Isocitrate Dehydrogenase; IRF = Independent Radiologic Facility; LGG = Low-Grade Glioma; KPS = Karnofsky Performance Status; MR = Minor Response; mRANO = Modified RANO; NANO = Neurological Assessment in Neuro-Oncology; ORR = Objective Response Rate; OS = Overall Survival; PD = Progressive Disease; PFS = Progression-Free Survival; PR = Partial Response; PsP = Pseudoprogression; RANO = Response Assessment in Neuro-Oncology; RECIST = Response Evaluation Criteria In Solid Tumors; RT = Radiation Therapy; SD = Stable Disease; Tx = Treatment.

17.
Anat Rec (Hoboken) ; 306(7): 1951-1968, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883781

RESUMEN

Ceratopsian dinosaurs arguably show some of the most extravagant external cranial morphology across all Dinosauria. For over a century, ceratopsian dinosaurs have inspired a multitude of cranial functional studies as more discoveries continued to depict a larger picture of the enormous diversity of these animals. The iconic horns and bony frills in many ceratopsians portray a plethora of shapes, sizes, and arrangements across taxa, and their overall feeding apparatus show the development of unique specializations previously unseen in large herbivores. Here, I give a brief updated review of the many functional studies investigating different aspects of the ceratopsian head. The functional role of the horns and bony frills is explored, with an overview of studies investigating their potential for weaponization or defense in either intraspecific or anti-predatory combat, among other things. A review of studies pertaining to the ceratopsian feeding apparatus is also presented here, with analyses of studies exploring their beak and snout morphology, dentition and tooth wear, cranial musculature with associated skull anatomy, and feeding biomechanics.


Asunto(s)
Dinosaurios , Fósiles , Animales , Cráneo/anatomía & histología , Cabeza/anatomía & histología , Dinosaurios/anatomía & histología , Fenómenos Biomecánicos , Evolución Biológica , Filogenia
18.
Int J Dent ; 2023: 9414184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635897

RESUMEN

Introduction: The sella turcica is one of the important landmarks of lateral cephalometry, which is used in orthodontics for the diagnosis, treatment plan, and evaluation of skeletal development and maturity. The purpose of the present study is to investigate the relationship between the dimensions and morphology of sella turcica with the long-face growth pattern and people with an open bite. This study also examines the relationship between sella turcica bridging (STB) and the vertical growth pattern. Methods: As many as 153 radiographs were analyzed using the Romexis software, considering the basal, gonial, and FMA angles to determine the vertical growth pattern of the face. The basal angle was also used to check for an open bite. Of these patients, 80 had a long vertical face growth pattern, and 73 had a normal face growth pattern. The four landmarks of tuberculum sellae, dorsum sellae, sellae floor, and posterior clinoid were determined on the cephalograms to measure the length, depth, and anteroposterior diameter of the sella turcica. Results: In this study, it was found that the chance of developing a long face in people with partial and complete bridging is 8.37 and 1.92, respectively. An increase in the length of the sella turcica for one unit decreases the chance of a long face, and as the depth of the sella turcica increases, the chance of a long face increases. Conclusions: STB is frequently seen in people with long faces. However, this finding should be considered in relation to other diagnostic parameters. The shorter the length and higher the depth of sella turcica, the higher the chance of developing a long face.

19.
Neuroradiol J ; : 19714009231193158, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37529843

RESUMEN

The simplest approach to convey the results of scientific analysis, which can include complex comparisons, is typically through the use of visual items, including figures and plots. These statistical plots play a critical role in scientific studies, making data more accessible, engaging, and informative. A growing number of visual representations have been utilized recently to graphically display the results of oncologic imaging, including radiomic and radiogenomic studies. Here, we review the applications, distinct properties, benefits, and drawbacks of various statistical plots. Furthermore, we provide neuroradiologists with a comprehensive understanding of how to use these plots to effectively communicate analytical results based on imaging data.

20.
Neoplasia ; 37: 100886, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36774835

RESUMEN

Imaging plays a central role in neuro-oncology including primary diagnosis, treatment planning, and surveillance of tumors. The emergence of quantitative imaging and radiomics provided an uprecedented opportunity to compile mineable databases that can be utilized in a variety of applications. In this review, we aim to summarize the current state of conventional and advanced imaging techniques, standardization efforts, fast protocols, contrast and sedation in pediatric neuro-oncologic imaging, radiomics-radiogenomics, multi-omics and molecular imaging approaches. We will also address the existing challenges and discuss future directions.


Asunto(s)
Diagnóstico por Imagen , Neoplasias , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA