Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 12(8): 778-85, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725321

RESUMEN

The transcription factors that regulate differentiation into the monocyte subset in bone marrow have not yet been identified. Here we found that the orphan nuclear receptor NR4A1 controlled the differentiation of Ly6C- monocytes. Ly6C- monocytes, which function in a surveillance role in circulation, were absent from Nr4a1-/- mice. Normal numbers of myeloid progenitor cells were present in Nr4a1-/- mice, which indicated that the defect occurred during later stages of monocyte development. The defect was cell intrinsic, as wild-type mice that received bone marrow from Nr4a1-/- mice developed fewer patrolling monocytes than did recipients of wild-type bone marrow. The Ly6C- monocytes remaining in the bone marrow of Nr4a1-/- mice were arrested in S phase of the cell cycle and underwent apoptosis. Thus, NR4A1 functions as a master regulator of the differentiation and survival of 'patrolling' Ly6C- monocytes.


Asunto(s)
Antígenos Ly/inmunología , Apoptosis/inmunología , Médula Ósea/inmunología , Diferenciación Celular/inmunología , Monocitos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Animales , Ciclo Celular/inmunología , Daño del ADN/inmunología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN Mensajero/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos
2.
Gastroenterology ; 150(2): 465-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26481854

RESUMEN

BACKGROUND & AIMS: Crohn's disease (CD) is associated with a dysregulated immune response to commensal micro-organisms in the intestine. Mice deficient in inositol polyphosphate 5'-phosphatase D (INPP5D, also known as SHIP) develop intestinal inflammation resembling that of patients with CD. SHIP is a negative regulator of PI3Kp110α activity. We investigated mechanisms of intestinal inflammation in Inpp5d(-/-) mice (SHIP-null mice), and SHIP levels and activity in intestinal tissues of subjects with CD. METHODS: We collected intestines from SHIP-null mice, as well as Inpp5d(+/+) mice (controls), and measured levels of cytokines of the interleukin 1 (IL1) family (IL1α, IL1ß, IL1ra, and IL6) by enzyme-linked immunosorbent assay. Macrophages were isolated from lamina propria cells of mice, IL1ß production was measured, and mechanisms of increased IL1ß production were investigated. Macrophages were incubated with pan-phosphatidylinositol 3-kinase inhibitors or PI3Kp110α-specific inhibitors. Some mice were given an antagonist of the IL1 receptor; macrophages were depleted from ilea of mice using clodronate-containing liposomes. We obtained ileal biopsies from sites of inflammation and peripheral blood mononuclear cells (PBMCs) from treatment-naïve subjects with CD or without CD (controls), and measured SHIP levels and activity. PBMCs were incubated with lipopolysaccharide and adenosine triphosphate, and levels of IL1ß production were measured. RESULTS: Inflamed intestinal tissues and intestinal macrophages from SHIP-null mice produced higher levels of IL1B and IL18 than intestinal tissues from control mice. We found PI3Kp110α to be required for macrophage transcription of Il1b. Macrophage depletion or injection of an IL1 receptor antagonist reduced ileal inflammation in SHIP-null mice. Inflamed ileal tissues and PBMCs from patients with CD had lower levels of SHIP protein than controls (P < .0001 and P < .0002, respectively). There was an inverse correlation between levels of SHIP activity in PBMCs and induction of IL1ß production by lipopolysaccharide and adenosine triphosphate (R(2) = .88). CONCLUSIONS: Macrophages from SHIP-deficient mice have increased PI3Kp110α-mediated transcription of Il1b, which contributes to spontaneous ileal inflammation. SHIP levels and activity are lower in intestinal tissues and peripheral blood samples from patients with CD than controls. There is an inverse correlation between SHIP activity and induction of IL1ß production by lipopolysaccharide and adenosine triphosphate in PBMCs. Strategies to reduce IL1B might be developed to treat patients with CD found to have low SHIP activity.


Asunto(s)
Enfermedad de Crohn/enzimología , Ileítis/enzimología , Íleon/enzimología , Interleucina-1beta/metabolismo , Macrófagos/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Modelos Animales de Enfermedad , Humanos , Ileítis/diagnóstico , Ileítis/genética , Ileítis/inmunología , Íleon/inmunología , Íleon/patología , Inositol Polifosfato 5-Fosfatasas , Interleucina-18/metabolismo , Interleucina-1beta/genética , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Macrófagos/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/metabolismo , Transcripción Genética , Regulación hacia Arriba
3.
Diabetologia ; 59(6): 1242-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970755

RESUMEN

AIMS/HYPOTHESIS: Islet amyloid, a pathological feature of type 2 diabetes, forms from the aggregation of islet amyloid polypeptide (IAPP), a beta cell peptide that is produced and co-secreted with insulin. Cholesterol regulates amyloid-ß processing, deposition and clearance, promoting amyloidogenesis in the brain. ATP-binding cassette transporter 1 (ABCA1) is a cholesterol efflux transporter that when absent increases and when overexpressed reduces brain amyloid-ß deposition in mouse models of Alzheimer's disease. We examined whether alterations in ABCA1 expression and islet cholesterol content could also modulate islet amyloidogenesis. METHODS: Thioflavin S staining for amyloid was performed in islets isolated from mice with beta cell expression of human IAPP (hIAPP (Tg/o)) and cultured for 8 days following cholesterol loading, microRNA-33 overexpression (to reduce ABCA1 expression) or palmitate treatment in the presence or absence of ABCA1 overexpression or mevastatin treatment (to reduce cholesterol synthesis). hIAPP (Tg/o) mice were crossed with beta cell-specific Abca1-knockout mice (hIAPP (Tg/o) Abca1 (ßKO)) and glucose tolerance and amyloid formation were assessed. RESULTS: Cholesterol loading and microRNA-33-induced reduction in islet ABCA1 expression increased Thioflavin S-positive amyloid in hIAPP (Tg/o) islets. Palmitate treatment also increased amyloid formation and this was reduced by both ABCA1 overexpression and mevastatin treatment. hIAPP (Tg/o) Abca1 (ßKO) mice had increased islet cholesterol, accompanied by fasting hyperglycaemia, glucose intolerance, impaired in vivo insulin secretion and an increased islet proinsulin:insulin ratio. Amyloid area was increased in cultured hIAPP (Tg/o) Abca1 (ßKO) islets compared with hIAPP (Tg/o) controls. CONCLUSIONS/INTERPRETATION: These data suggest that elevations in islet cholesterol may lead to increases in IAPP aggregation and islet amyloid formation, further worsening beta cell function and glucose homeostasis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/deficiencia , Amiloidosis/metabolismo , Amiloidosis/patología , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Amiloide/metabolismo , Animales , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Lovastatina/análogos & derivados , Lovastatina/farmacología , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Palmitatos/farmacología , Ratas
4.
Diabetologia ; 57(8): 1645-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816367

RESUMEN

AIMS/HYPOTHESIS: Inflammation contributes to pancreatic beta cell dysfunction in type 2 diabetes. Toll-like receptor (TLR)-2 and -4 ligands are increased systemically in recently diagnosed type 2 diabetes patients, and TLR2- and TLR4-deficient mice are protected from the metabolic consequences of a high-fat diet. Here we investigated the role of macrophages in TLR2/6- and TLR4-mediated effects on islet inflammation and beta cell function. METHODS: Genetic and pharmacological approaches were used to determine the effects of TLR2/6 and TLR4 ligands on mouse islets, human islets and purified rat beta cells. Islet macrophages were depleted and sorted by flow cytometry and the effects of TLR2/6- and TLR4-activated bone-marrow-derived macrophages (BMDMs) on beta cell function were assessed. RESULTS: Macrophages contributed to TLR2/6- and TLR4-induced islet Il1a/IL1A and Il1b/IL1B mRNA expression in mouse and human islets and IL-1ß secretion from human islets. TLR2/6 and TLR4 ligands also reduced insulin gene expression; however, this occurred in a non-beta cell autonomous manner. TLR2/6- and TLR4-activated BMDMs reduced beta cell insulin secretion partly via reducing Ins1, Ins2, and Pdx1 mRNA expression. Antagonism of the IL-1 receptor and neutralisation of IL-6 completely reversed the effects of activated macrophages on beta cell gene expression. CONCLUSIONS/INTERPRETATION: We conclude that islet macrophages are major contributors to islet IL-1ß secretion in response to TLR2/6 and TLR4 ligands. BMDMs stimulated with TLR2/6 and TLR4 ligands reduce insulin secretion from pancreatic beta cells, partly via IL-1ß- and IL-6-mediated decreased insulin gene expression.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/genética , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Islotes Pancreáticos/metabolismo , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Ratones Noqueados , Ratas , Receptores Toll-Like/genética
5.
Immunol Cell Biol ; 92(4): 314-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24492799

RESUMEN

The global health and economic burden of type 2 diabetes (T2D) has reached staggering proportions. Current projections estimate that 592 million people will have diabetes by 2035. T2D-which comprises 90% of cases-is a complex disease, in most cases resulting from a combination of predisposing genes and an unhealthy environment. Clinical onset of the disease occurs when pancreatic ß cells fail in the face of insulin resistance. It has long been appreciated that chronic activation of the innate immune system is associated with T2D, and many organs critical to the regulation of glucose homeostasis show signs of a chronic inflammatory process, including the pancreatic islets of Langerhans. Recent clinical trials using IL-1-targeting agents have confirmed that inflammation contributes to ß-cell failure in humans with T2D. However, little is known about the nature of the pro-inflammatory response within the islet, and there is considerable debate about the triggers for islet inflammation, which may be systemically derived and/or tissue-specific. In this review, we present evidence that Toll-like receptors 2 and 4 and the NLRP3 (Nucleotide-binding oligomerization domain, Leucine-rich Repeat and Pyrin domain containing 3) inflammasome are triggers for islet inflammation in T2D and propose that the activation of macrophages by these triggers mediates islet endocrine cell dysfunction. Therapeutically targeting these receptors may improve hyperglycemia and protect the ß cell in T2D.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/patología , Inflamación/inmunología , Inflamación/patología , Islotes Pancreáticos/patología , Receptores Toll-Like/metabolismo , Animales , Diabetes Mellitus Tipo 2/terapia , Humanos , Islotes Pancreáticos/inmunología , Macrófagos/patología
6.
Nephron Exp Nephrol ; 126(3): 141-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24854879

RESUMEN

BACKGROUND: Lipoprotein abnormalities are associated with a rapid decline in renal function in patients of chronic kidney disease. In addition, hyperlipidemia is associated with an increased risk of developing renal insufficiency. The underlying molecular mechanisms for these clinical findings are unclear. We have previously reported a role for inhibitor of differentiation 3 (ID3), a transcription factor, in regulating kidney disease in hyperlipidemia. Introducing a genetic deficiency of Id3 in spontaneously hyperlipidemic apolipoprotein E knockout (Apoe(-/-)) mice led to accelerated mesangioproliferative glomerulonephritis. The present study was carried out to further investigate the contribution of ID3 in hyperlipidemia-associated kidney disease. METHODS: Female C57BL/6 mice that were ID3-sufficient wild-type (WT) or ID3-deficient (Id3(-/-)) were fed a Western diet and evaluated for proteinuria, glomerular pathology, and immune infiltrating cells. Primary mesangial cell lines were generated from both mouse strains and stimulated with oxidized phospholipids. Cytokines and chemokines produced were measured by multiplex assays, ELISA, and QPCR. Glomerular isolates were studied for CXCL1 expression by QPCR. RESULTS: Id3(-/-) mice on a Western diet developed accelerated proteinuria and mesangioproliferative glomerulonephritis compared to WT controls. In vitro, Id3(-/-) glomerular mesangial cell lines produced higher levels of the monocyte chemoattractant CXCL1 in response to oxidized phospholipids. This was consistent with the rapid increase in glomerular CXCL1 expression followed by macrophage infiltration in Id3(-/-) mice fed a Western diet. CONCLUSIONS: A functional ID3 influences susceptibility to kidney disease and prevents glomerular injury by regulating local chemokine production and inflammatory cell recruitment.


Asunto(s)
Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Proteínas Inhibidoras de la Diferenciación/fisiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Animales , Línea Celular , Femenino , Activación de Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción
8.
Am J Pathol ; 179(2): 651-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21801865

RESUMEN

The clinical association between hyperlipidemia and renal disease is well established, yet hyperlipidemia as a cause for renal disease is rare. Apolipoprotein E-deficient (ApoE(-/-)) mice develop hyperlipidemia and are a model for atherosclerosis. Introducing deficiency of inhibitor of differentiation 3 (Id3) in ApoE(-/-) mice further exacerbates atherosclerosis. ID3 is a transcription regulator expressed in multiple cell types. Id3(-/-) mice develop antibodies to self-antigens and salivary gland autoimmunity. This study was undertaken to investigate a link between hyperlipidemia, autoimmunity, and renal disease. ApoE(-/-), Id3(-/-), and ApoE(-/-)Id3(-/-) double-knockout (DKO) mice were studied at different ages for renal pathological features and function. Serum samples were analyzed for the presence of autoantibodies. At 16 weeks, DKO mice developed mesangioproliferative glomerulonephritis (GN), leading to severe proteinuria. GN was associated with glomerular deposition of lipids and immune complexes and with macrophage infiltration. DKO mice had high levels of circulating autoantibodies. Although ApoE(-/-) mice had glomerular lipid deposits and Id3(-/-) mice had circulating autoantibodies, neither group of age-matched single-knockout mice developed GN. These data provide support for the hypothesis that induction of renal disease in hyperlipidemia is dictated by additional factors. Our study shows that some of these factors are regulated by ID3. Thus, ID3 is a novel risk factor linking cardiovascular and renal disease.


Asunto(s)
Apolipoproteínas E/genética , Glomerulonefritis/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación Mielomonocítica/biosíntesis , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Regulación de la Expresión Génica , Glomerulonefritis/genética , Sistema Inmunológico , Inmunoglobulina G/química , Riñón/metabolismo , Enfermedades Renales/genética , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica/métodos , Factores de Riesgo
9.
Nephron Exp Nephrol ; 121(1-2): e1-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23095207

RESUMEN

AIMS: The role of kidney infiltrating T cells in the pathology of lupus nephritis is unclear. This study was undertaken to investigate whether CD4+ T cell responses to a surrogate mesangial antigen can initiate glomerulonephritis. METHODS: Ovalbumin (OVA) was deposited in the glomerular mesangium of C57BL/6 (B6) mice using anti-α8-integrin immunoliposomes (α8ILs). This was followed by injection of activated OVA-reactive CD4+ transgenic OT2 T cells. Trafficking of antigen-specific OT2 T cells to kidneys and lymph nodes was studied by flow cytometry. Glomerular pathology and immune cell infiltration was characterized by immunostaining. Role of CCR2 deficiency on T cell-mediated glomerulonephritis was investigated using B6.ccr2(-/-) mice. RESULTS: α8ILs delivered OVA specifically to the renal glomeruli. Adoptively transferred OT2 T cells preferentially accumulated in renal lymph nodes and in the renal cortex. Kidneys showed glomerular inflammation with recruitment of endogenous T cells, dendritic cells and macrophages. T cell-mediated inflammation induced mesangial cell activation and an increase in glomerular MCP1 and fibronectin. The formation of inflammatory foci was driven by Ly6C monocytes and was CCR2 dependent. CONCLUSIONS: The findings from this study show that T cells reactive with antigens in the mesangium are sufficient to initiate glomerular pathology. Antigen-specific CD4 T cells act by inducing glomerular MCP1 production which mediates recruitment of inflammatory monocytes resulting in glomerulonephritis. Thus, down-modulation of T cell responses within the kidneys of lupus patients will be a beneficial therapeutic approach.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Glomerulonefritis/inmunología , Riñón/inmunología , Activación de Linfocitos/inmunología , Células Mesangiales/inmunología , Animales , Linfocitos T CD4-Positivos/patología , Femenino , Glomerulonefritis/patología , Riñón/patología , Células Mesangiales/patología , Ratones , Ratones Endogámicos C57BL
10.
iScience ; 23(1): 100775, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31962237

RESUMEN

Macrophages play a dynamic role in tissue repair following injury. Here we found that following streptozotocin (STZ)-induced beta-cell death, mouse islet macrophages had increased Igf1 expression, decreased proinflammatory cytokine expression, and transcriptome changes consistent with macrophages undergoing efferocytosis and having an enhanced state of metabolism. Macrophages were the major, if not sole, contributors to islet insulin-like growth factor-1 (IGF-1) production. Adoptive transfer experiments showed that macrophages can maintain insulin secretion in vivo following beta-cell death with no effects on islet cell turnover. IGF-1 neutralization during STZ treatment decreased insulin secretion without affecting islet cell apoptosis or proliferation. Interestingly, high-fat diet (HFD) combined with STZ further skewed islet macrophages to a reparative state. Finally, islet macrophages from db/db mice also expressed decreased proinflammatory cytokines and increased Igf1 mRNA. These data have important implications for islet biology and pathology and show that islet macrophages preserve their reparative state following beta-cell death even during HFD feeding and severe hyperglycemia.

11.
Diabetes ; 63(9): 2984-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24812426

RESUMEN

Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated the effects of α-cell gp130 receptor signaling on glycemic control in type 2 diabetes. IL-6 family cytokines were elevated in islets in rodent models of this disease. gp130 receptor activation increased STAT3 phosphorylation in primary α-cells and stimulated glucagon secretion. Pancreatic α-cell gp130 knockout (αgp130KO) mice showed no differences in glycemic control, α-cell function, or α-cell mass. However, when subjected to streptozotocin plus high-fat diet to induce islet inflammation and pathophysiology modeling type 2 diabetes, αgp130KO mice had reduced fasting glycemia, improved glucose tolerance, reduced fasting insulin, and improved α-cell function. Hyperinsulinemic-euglycemic clamps revealed no differences in insulin sensitivity. We conclude that in a setting of islet inflammation and pathophysiology modeling type 2 diabetes, activation of α-cell gp130 receptor signaling has deleterious effects on α-cell function, promoting hyperglycemia. Antagonism of α-cell gp130 receptor signaling may be useful for the treatment of type 2 diabetes.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Glucagón/metabolismo , Animales , Receptor gp130 de Citocinas/antagonistas & inhibidores , Dieta Alta en Grasa , Glucagón/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Masculino , Ratones , Ratones Noqueados , Fosforilación , Ratas , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA