Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(6): 1024-1035, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615660

RESUMEN

OBJECTIVE: Although animal models suggest a role for blood-brain barrier dysfunction in postoperative delirium-like behavior, its role in postoperative delirium and postoperative recovery in humans is unclear. Thus, we evaluated the role of blood-brain barrier dysfunction in postoperative delirium and hospital length of stay among older surgery patients. METHODS: Cognitive testing, delirium assessment, and cerebrospinal fluid and blood sampling were prospectively performed before and after non-cardiac, non-neurologic surgery. Blood-brain barrier dysfunction was assessed using the cerebrospinal fluid-to-plasma albumin ratio (CPAR). RESULTS: Of 207 patients (median age = 68 years, 45% female) with complete CPAR and delirium data, 26 (12.6%) developed postoperative delirium. Overall, CPAR increased from before to 24 hours after surgery (median change = 0.28, interquartile range [IQR] = -0.48 to 1.24, Wilcoxon p = 0.001). Preoperative to 24 hours postoperative change in CPAR was greater among patients who developed delirium versus those who did not (median [IQR] = 1.31 [0.004 to 2.34] vs 0.19 [-0.55 to 1.08], p = 0.003). In a multivariable model adjusting for age, baseline cognition, and surgery type, preoperative to 24 hours postoperative change in CPAR was independently associated with delirium occurrence (per CPAR increase of 1, odds ratio = 1.30, 95% confidence interval [CI] = 1.03-1.63, p = 0.026) and increased hospital length of stay (incidence rate ratio = 1.15, 95% CI = 1.09-1.22, p < 0.001). INTERPRETATION: Postoperative increases in blood-brain barrier permeability are independently associated with increased delirium rates and postoperative hospital length of stay. Although these findings do not establish causality, studies are warranted to determine whether interventions to reduce postoperative blood-brain barrier dysfunction would reduce postoperative delirium rates and hospital length of stay. ANN NEUROL 2023;94:1024-1035.


Asunto(s)
Delirio , Delirio del Despertar , Compuestos Organometálicos , Humanos , Femenino , Anciano , Masculino , Delirio/etiología , Delirio/epidemiología , Delirio/psicología , Barrera Hematoencefálica , Complicaciones Posoperatorias , Factores de Riesgo
2.
Brain Behav Immun ; 73: 520-532, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935309

RESUMEN

Functional pain syndromes, such as fibromyalgia and temporomandibular disorder, are associated with enhanced catecholamine tone and decreased levels of catechol-O-methyltransferase (COMT; an enzyme that metabolizes catecholamines). Consistent with clinical syndromes, our lab has shown that sustained 14-day delivery of the COMT inhibitor OR486 in rodents results in pain at multiple body sites and pain-related volitional behaviors. The onset of COMT-dependent functional pain is mediated by peripheral ß2- and ß3-adrenergic receptors (ß2- and ß3ARs) through the release of the pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). Here, we first sought to investigate the role of ß2- and ß3ARs and downstream mediators in the maintenance of persistent functional pain. We then aimed to characterize the resulting persistent inflammation in neural tissues (neuroinflammation), characterized by activated glial cells and phosphorylation of the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK). Separate groups of rats were implanted with subcutaneous osmotic mini-pumps to deliver OR486 (15 mg/kg/day) or vehicle for 14 days. The ß2AR antagonist ICI118551 and ß3AR antagonist SR59230A were co-administrated subcutaneously with OR486 or vehicle either on day 0 or day 7. The TNFα inhibitor Etanercept, the p38 inhibitor SB203580, or the ERK inhibitor U0126 were delivered intrathecally following OR486 cessation on day 14. Behavioral responses, pro-inflammatory cytokine levels, glial cell activation, and MAPK phosphorylation were measured over the course of 35 days. Our results demonstrate that systemic delivery of OR486 leads to mechanical hypersensitivity that persists for at least 3 weeks after OR486 cessation. Corresponding increases in spinal TNFα, IL-1ß, and IL-6 levels, microglia and astrocyte activation, and neuronal p38 and ERK phosphorylation were observed on days 14-35. Persistent functional pain was alleviated by systemic delivery of ICI118551 and SR59230A beginning on day 0, but not day 7, and by spinal delivery of Etanercept or SB203580 beginning on day 14. These results suggest that peripheral ß2- and ß3ARs drive persistent COMT-dependent functional pain via increased activation of immune cells and production of pro-inflammatory cytokines, which promote neuroinflammation and nociceptor activation. Thus, therapies that resolve neuroinflammation may prove useful in the management of functional pain syndromes.


Asunto(s)
Dolor/metabolismo , Receptores Adrenérgicos beta 2/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Animales , Catecol O-Metiltransferasa/metabolismo , Inhibidores de Catecol O-Metiltransferasa/metabolismo , Catecoles/farmacología , Citocinas/metabolismo , Etanercept/farmacología , Femenino , Fibromialgia/metabolismo , Fibromialgia/fisiopatología , Hiperalgesia/metabolismo , Imidazoles/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Neuroglía/metabolismo , Dolor/fisiopatología , Fosforilación , Propanolaminas/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/fisiología , Receptores Adrenérgicos beta 3/efectos de los fármacos , Receptores Adrenérgicos beta 3/fisiología , Médula Espinal/metabolismo , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/fisiopatología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
J Minim Invasive Gynecol ; 24(1): 67-73, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773810

RESUMEN

STUDY OBJECTIVE: Our aim was to assess incidence and risk factors for pelvic pain after pelvic mesh implantation. DESIGN: Retrospective study (Canadian Task Force classification II-2). SETTING: Single university hospital. PATIENTS: Women who have undergone surgery with pelvic mesh implant for treatment of pelvic floor disorders including prolapse and incontinence. INTERVENTIONS: Telephone interviews to assess pain, sexual function, and general health. MEASUREMENTS AND MAIN RESULTS: Pain was measured by the McGill Short-Form Pain Questionnaire for somatic pain, Neuropathic Pain Symptom Inventory for neuropathic pain, Pennebaker Inventory of Limbic Languidness for somatization, and Female Sexual Function Index (FSFI) for sexual health and dyspareunia. General health was assessed with the 12-item Short-Form Health Survey. Among 160 enrolled women, mean time since surgery was 20.8 ± 10.5 months, mean age was 62.1 ± 11.2 years, 93.8% were white, 86.3% were postmenopausal, and 3.1% were tobacco users. Types of mesh included midurethral sling for stress incontinence (78.8%), abdominal/robotic sacrocolpopexy (35.7%), transvaginal for prolapse (6.3%), and perirectal for fecal incontinence (1.9%), with 23.8% concomitant mesh implants for both prolapse and incontinence. Our main outcome, self-reported pelvic pain at least 1 year after surgery, was 15.6%. Women reporting pain were younger, with fibromyalgia, worse physical health, higher somatization, and lower surgery satisfaction (all p < .05). Current pelvic pain correlated with early postoperative pelvic pain (p < .001), fibromyalgia (p = .002), worse physical health (p = .003), and somatization (p = .003). Sexual function was suboptimal (mean FSFI, 16.2 ± 12.1). Only 54.0% were sexually active, with 19.0% of those reporting dyspareunia. CONCLUSION: One in 6 women reported de novo pelvic pain after pelvic mesh implant surgery, with decreased sexual function. Risk factors included younger age, fibromyalgia, early postoperative pain, poorer physical health, and somatization. Understanding risk factors for pelvic pain after mesh implantation may improve patient selection.


Asunto(s)
Trastornos del Suelo Pélvico/cirugía , Dolor Pélvico/etiología , Mallas Quirúrgicas , Factores de Edad , Femenino , Fibromialgia/complicaciones , Estado de Salud , Humanos , Incidencia , Persona de Mediana Edad , Complicaciones Posoperatorias , Estudios Retrospectivos , Factores de Riesgo , Trastornos Somatomorfos/complicaciones , Cabestrillo Suburetral
4.
Anesthesiology ; 124(5): 1122-35, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26950706

RESUMEN

BACKGROUND: Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via ß-adrenergic receptor (ßAR) activation. The contribution of distinct ßAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. METHODS: Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal ßARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained ßAR antagonists peripherally, spinally, or supraspinally alongside OR486. RESULTS: The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective ßAR antagonist propranolol, the ß2AR antagonist ICI-118,511, or the ß3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. CONCLUSIONS: Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting ßAR antagonists may benefit chronic pain patients.


Asunto(s)
Catecol O-Metiltransferasa/metabolismo , Dolor/enzimología , Sistema Nervioso Periférico/efectos de los fármacos , Receptores Adrenérgicos beta/efectos de los fármacos , Adrenalectomía , Antagonistas Adrenérgicos beta/farmacología , Animales , Conducta Animal/efectos de los fármacos , Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Femenino , Calor , Inyecciones Espinales , Masculino , Dimensión del Dolor/efectos de los fármacos , Estimulación Física , Propanolaminas/farmacología , Ratas , Ratas Sprague-Dawley
5.
Brain Behav Immun ; 50: 196-202, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26187567

RESUMEN

Nuclear factor-kappa B (NF-κB) is a ubiquitously expressed protein complex regulating the transcription of genes involved in inflammation and pain. Increased NF-κB activity in immune and nervous system cells is linked to several chronic pain conditions in humans as well as inflammation and nerve injury-evoked pain in animals. A recent in vitro study further demonstrates that increased NF-κB activity in astrocytes decreases transcription of catechol-o-methyltransferase (COMT), an enzyme that inactivates catecholamines that cause pain. The purpose of the present study was to examine the relationship between systemic and astrocytic NF-κB activity, pain, and COMT expression in an animal model of inflammation. Results demonstrated that administration of the inflammatory stimulant complete Freund's adjuvant (CFA) led to increased pain and decreased COMT protein expression in an NF-κB-dependent manner. Specifically, we found that rats and mice receiving intraplantar CFA exhibited increased behavioral responses to mechanical and thermal heat stimuli. CFA-evoked pain was blocked in rats receiving a pre-emptive systemic dose of the NF-κB inhibitor MG132 and exacerbated in IKKca mice with constitutive NF-κB activity in astrocytes. Furthermore, we observed NF-κB-linked reductions in COMT expression in midbrain at 6h and 1d following CFA in rats and at 1h and 1d in forebrain and midbrain following CFA in IKKca mice. Collectively, these results demonstrate that systemic and astrocytic NF-κB activity drive inflammatory pain and regulate the expression of COMT in forebrain and midbrain structures.


Asunto(s)
Encéfalo/metabolismo , Catecol O-Metiltransferasa/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Dolor/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Adyuvante de Freund , Calor , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/complicaciones , Leupeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , Dolor/etiología , Dimensión del Dolor , Estimulación Física , Ratas , Ratas Sprague-Dawley
6.
Pain ; 165(8): e80-e92, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422485

RESUMEN

ABSTRACT: Postoperative pain is a major clinical problem imposing a significant burden on patients and society. In a survey 2 years after orthopedic surgery, 57% of patients reported persisting postoperative pain. However, only limited progress has been made in the development of safe and effective therapies to prevent the onset and chronification of pain after orthopedic surgery. We established a tibial fracture mouse model that recapitulates clinically relevant orthopedic trauma surgery, which causes changes in neuropeptide levels in dorsal root ganglia and sustained neuroinflammation in the spinal cord. Here, we monitored extended pain behavior in this model, observing chronic bilateral hindpaw mechanical allodynia in both male and female C57BL/6J mice that persisted for >3 months after surgery. We also tested the analgesic effects of a novel, minimally invasive, bioelectronic approach to percutaneously stimulate the vagus nerve (termed percutaneous vagus nerve stimulation [pVNS]). Weekly pVNS treatment for 30 minutes at 10 Hz for 3 weeks after the surgery strongly reduced pain behaviors compared with untreated controls. Percutaneous vagus nerve stimulation also improved locomotor coordination and accelerated bone healing. In the dorsal root ganglia, vagal stimulation inhibited the activation of glial fibrillary acidic protein-positive satellite cells but without affecting microglial activation. Overall, these data provide novel evidence supportive of the use of pVNS to prevent postoperative pain and inform translational studies to test antinociceptive effects of bioelectronic medicine in the clinic.


Asunto(s)
Modelos Animales de Enfermedad , Ganglios Espinales , Hiperalgesia , Ratones Endogámicos C57BL , Dolor Postoperatorio , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Ratones , Dolor Postoperatorio/terapia , Dolor Postoperatorio/etiología , Masculino , Femenino , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Hiperalgesia/terapia , Procedimientos Ortopédicos/efectos adversos , Fracturas de la Tibia/cirugía
7.
Sci Transl Med ; 16(742): eadj0395, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598615

RESUMEN

Chronic primary pain conditions (CPPCs) affect over 100 million Americans, predominantly women. They remain ineffectively treated, in large part because of a lack of valid animal models with translational relevance. Here, we characterized a CPPC mouse model that integrated clinically relevant genetic (catechol-O-methyltransferase; COMT knockdown) and environmental (stress and injury) factors. Compared with wild-type mice, Comt+/- mice undergoing repeated swim stress and molar extraction surgery intervention exhibited pronounced multisite body pain and depressive-like behavior lasting >3 months. Comt+/- mice undergoing the intervention also exhibited enhanced activity of primary afferent nociceptors innervating hindpaw and low back sites and increased plasma concentrations of norepinephrine and pro-inflammatory cytokines interleukin-6 (IL-6) and IL-17A. The pain and depressive-like behavior were of greater magnitude and longer duration (≥12 months) in females versus males. Furthermore, increases in anxiety-like behavior and IL-6 were female-specific. The effect of COMT genotype × stress interactions on pain, IL-6, and IL-17A was validated in a cohort of 549 patients with CPPCs, demonstrating clinical relevance. Last, we assessed the predictive validity of the model for analgesic screening and found that it successfully predicted the lack of efficacy of minocycline and the CB2 agonist GW842166X, which were effective in spared nerve injury and complete Freund's adjuvant models, respectively, but failed in clinical trials. Yet, pain in the CPPC model was alleviated by the beta-3 adrenergic antagonist SR59230A. Thus, the CPPC mouse model reliably recapitulates clinically and biologically relevant features of CPPCs and may be implemented to test underlying mechanisms and find new therapeutics.


Asunto(s)
Dolor Crónico , Ratas , Masculino , Humanos , Femenino , Ratones , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Catecol O-Metiltransferasa/genética , Interleucina-17 , Interleucina-6 , Ratas Sprague-Dawley
8.
J Integr Complement Med ; 29(1): 22-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251868

RESUMEN

Introduction: Active duty (AD) women suffer with chronic pelvic pain (CPP) while providers tackle diagnoses and treatments to keep them functional without contributing to the opioid epidemic. The purpose of this randomized trial was to determine the effectiveness of noninvasive, self-explanatory mindfulness-based stress reduction (MBSR) or self-paced healthy lifestyle (HL) interventions on CPP in AD women. Methods: A 6-week, interventional prospective study with AD women aged 21-55 years at Mountain Home (MTHM), Idaho, was conducted. Women were randomly assigned to MBSR (N = 21) or HL (N = 20) interventions. The primary outcome was pain perception. The secondary outcomes were depression and circulating cytokine levels. Results: Women in the MBSR group exhibited reduced pain interference (p < 0.01) and depression (p < 0.05) alongside decreased interleukin (IL)-4 (p < 0.05), IL-6 (p < 0.05), eotaxin (p < 0.05), monocyte chemoattractant protein-1 (p = 0.06), and interleukin-1 receptor antagonist (IL-1ra) (p < 0.01) and increased vascular endothelial growth factor (p < 0.05). Women in the HL group did not have changes in pain; however, they did exhibit reduced depression (p < 0.05) alongside decreased granulocyte-macrophage colony-stimulating factor (p < 0.05) and increased tumor necrosis factor alpha (p < 0.05), stromal cell-derived factor-1 (p < 0.01), and IL-1ra (p < 0.01). Conclusions: AD women receiving MBSR or HL had reduced depression scores and altered circulating cytokine levels; however, only those receiving MBSR had reduced pain perception. Findings support MBSR as an effective and viable behavioral treatment for AD women suffering from CPP and provide premise for larger randomized controlled studies. Clinical Trial Registration: MOCHI-An RCT of mindfulness as a treatment for CPP in AD Women NCT04104542 (September 26, 2019).


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Personal Militar , Femenino , Humanos , Citocinas , Dolor Pélvico/terapia , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estrés Psicológico/terapia , Factor A de Crecimiento Endotelial Vascular , Adulto Joven , Adulto , Persona de Mediana Edad
9.
J Pain ; 24(5): 782-795, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36509176

RESUMEN

Temporomandibular disorder (TMD) pain that involves inflammation and injury in the temporomandibular joint (TMJ) and/or masticatory muscle is the most common form of orofacial pain. We recently found that transient receptor potential vanilloid-4 (TRPV4) in trigeminal ganglion (TG) neurons is upregulated after TMJ inflammation, and TRPV4 coexpresses with calcitonin gene-related peptide (CGRP) in TMJ-innervating TG neurons. Here, we extended these findings to determine the specific contribution of TRPV4 in TG neurons to TMD pain, and examine whether sensory neuron-TRPV4 modulates TMD pain via CGRP. In mouse models of TMJ inflammation or masseter muscle injury, sensory neuron-Trpv4 conditional knockout (cKO) mice displayed reduced pain. Coexpression of TRPV4 and CGRP in TMJ- or masseter muscle-innervating TG neurons was increased after TMJ inflammation and masseter muscle injury, respectively. Activation of TRPV4-expressing TG neurons triggered secretion of CGRP, which was associated with increased levels of CGRP in peri-TMJ tissues, masseter muscle, spinal trigeminal nucleus, and plasma in both models. Local injection of CGRP into the TMJ or masseter muscle evoked acute pain in naïve mice, while blockade of CGRP receptor attenuated pain in mouse models of TMD. These results suggest that TRPV4 in TG neurons contributes to TMD pain by potentiating CGRP secretion. PERSPECTIVE: This study demonstrates that activation of TRPV4 in TG sensory neurons drives pain by potentiating the release of pain mediator CGRP in mouse models of TMJ inflammation and masseter muscle injury. Targeting TRPV4 and CGRP may be of clinical potential in alleviating TMD pain.


Asunto(s)
Artritis , Trastornos de la Articulación Temporomandibular , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canales Catiónicos TRPV , Trastornos de la Articulación Temporomandibular/complicaciones , Células Receptoras Sensoriales/metabolismo , Dolor Facial , Ganglio del Trigémino/metabolismo , Inflamación
10.
J Pain ; 24(9): 1633-1644, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121498

RESUMEN

The origin of chronic pain is linked to inflammation, characterized by increased levels of proinflammatory cytokines in local tissues and systemic circulation. Transforming growth factor beta-activated kinase 1 (TAK1) is a key regulator of proinflammatory cytokine signaling that has been well characterized in the context of cancer and autoimmune disorders, yet its role in chronic pain is less clear. Here, we evaluated the ability of our TAK1 small-molecule inhibitor, takinib, to attenuate pain and inflammation in preclinical models of inflammatory, neuropathic, and primary pain. Inflammatory, neuropathic, and primary pain was modeled using intraplantar complete Freund's adjuvant (CFA), chronic constriction injury (CCI), and systemic delivery of the catechol-O-methyltransferase (COMT) inhibitor OR486, respectively. Behavioral responses evoked by mechanical and thermal stimuli were evaluated in separate groups of mice receiving takinib or vehicle prior to pain induction (baseline) and over 12 days following CFA injection, 4 weeks following CCI surgery, and 6 hours following OR486 delivery. Hindpaw edema was also measured prior to and 3 days following CFA injection. Upon termination of behavioral experiments, dorsal root ganglia (DRG) were collected to measure cytokines. We also evaluated the ability of takinib to modulate nociceptor activity via in vitro calcium imaging of neurons isolated from the DRG of Gcamp3 mice. In all 3 models, TAK1 inhibition significantly reduced hypersensitivity to mechanical and thermal stimuli and expression of proinflammatory cytokines in DRG. Furthermore, TAK1 inhibition significantly reduced the activity of tumor necrosis factor (TNF)-primed/capsaicin-evoked DRG nociceptive neurons. Overall, our results support the therapeutic potential of TAK1 as a novel drug target for the treatment of chronic pain syndromes with different etiologies. PERSPECTIVE: This article reports the therapeutic potential of TAK1 inhibitors for the treatment of chronic pain. This new treatment has the potential to provide a greater therapeutic offering to physicians and patients suffering from chronic pain as well as reduce the dependency on opioid-based pain treatments.


Asunto(s)
Dolor Crónico , Animales , Ratones , Catecol O-Metiltransferasa , Dolor Crónico/complicaciones , Citocinas/metabolismo , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Inflamación/complicaciones , Ratas Sprague-Dawley , Ratas
11.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292744

RESUMEN

Postoperative pain is a major clinical problem imposing a significant burden on our patients and society. Up to 57% of patients experience persistent postoperative pain 2 years after orthopedic surgery [49]. Although many studies have contributed to the neurobiological foundation of surgery-induced pain sensitization, we still lack safe and effective therapies to prevent the onset of persistent postoperative pain. We have established a clinically relevant orthopedic trauma model in mice that recapitulates common insults associated with surgery and ensuing complications. Using this model, we have started to characterize how induction of pain signaling contributes to neuropeptides changes in dorsal root ganglia (DRG) and sustained neuroinflammation in the spinal cord [62]. Here we have extended the characterization of pain behaviors for >3 months after surgery, describing a persistent deficit in mechanical allodynia in both male and female C57BL/6J mice after surgery. Notably, we have applied a novel minimally invasive bioelectronic approach to percutaneously stimulate the vagus nerve (termed pVNS) [24] and tested its anti-nociceptive effects in this model. Our results show that surgery induced a strong bilateral hind-paw allodynia with a slight decrease in motor coordination. However, treatment with pVNS for 30-minutes at10 Hz weekly for 3 weeks prevented pain behavior compared to naïve controls. pVNS also improved locomotor coordination and bone healing compared to surgery without treatment. In the DRGs, we observed that vagal stimulation fully rescued activation of GFAP positive satellite cells but did not affect microglial activation. Overall, these data provide novel evidence for the use of pVNS to prevent postoperative pain and may inform translational studies to test anti-nociceptive effects in the clinic.

12.
medRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214925

RESUMEN

Objective: Although animal models suggest a role for blood-brain barrier dysfunction in postoperative delirium-like behavior, its role in postoperative delirium and postoperative recovery in humans is unclear. Thus, we evaluated the role of blood-brain barrier dysfunction in postoperative delirium and hospital length of stay among older surgery patients. Methods: Cognitive testing, delirium assessment, and cerebrospinal fluid and blood sampling were prospectively performed before and after non-cardiac, non-neurologic surgery. Blood-brain barrier dysfunction was assessed using the cerebrospinal fluid-to-plasma albumin ratio (CPAR). Results: Of 207 patients (median age 68, 45% female) with complete CPAR and delirium data, 26 (12.6%) developed postoperative delirium. Overall, CPAR increased from before to 24-hours after surgery (median postoperative change 0.28, [IQR] [-0.48-1.24]; Wilcoxon p=0.001). Preoperative to 24-hour postoperative change in CPAR was greater among patients who developed delirium vs those who did not (median [IQR] 1.31 [0.004, 2.34] vs 0.19 [-0.55, 1.08]; p=0.003). In a multivariable model adjusting for age, baseline cognition, and surgery type, preoperative to 24-hour postoperative change in CPAR was independently associated with delirium incidence (per CPAR increase of 1, OR = 1.30, [95% CI 1.03-1.63]; p=0.026) and increased hospital length of stay (IRR = 1.15 [95% CI 1.09-1.22]; p<0.001). Interpretation: Postoperative increases in blood-brain barrier permeability are independently associated with increased delirium rates and postoperative hospital length of stay. Although these findings do not establish causality, studies are warranted to determine whether interventions to reduce postoperative blood-brain barrier dysfunction would reduce postoperative delirium rates and hospital length of stay.

13.
Pain ; 163(6): 1091-1101, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995041

RESUMEN

ABSTRACT: Heat shock protein 90 (Hsp90) is a ubiquitously expressed integral cellular protein essential for regulating proteomic stress. Previous research has shown that Hsp90 regulates critical signaling pathways underlying chronic pain and inflammation. Recent discovery of membrane bound ectopic Hsp90 (eHsp90) on tumor cells has shown that Hsp90 induction to the plasma membrane can stabilize disease-relevant proteins. Here, we characterize eHsp90 expression in a mouse model of inflammation and demonstrate its role in nociception and pain. We found that intraplantar complete Freund adjuvant (CFA) induced robust expression of eHsp90 on the cell membranes of primary afferent nociceptors located in the L3-L5 dorsal root ganglia (DRG), bilaterally, with minimal to no expression in other tissues. Complete Freund adjuvant-induced increases in eHsp90 expression on lumbar DRG were significantly greater in females compared with males. Furthermore, exogenous Hsp90 applied to primary Pirt-GCaMP3 nociceptors induced increases in calcium responses. Responses were estrogen-dependent such that greater activity was observed in female or estrogen-primed male nociceptors compared with unprimed male nociceptors. Treatment of mice with the selective eHsp90 inhibitor HS-131 (10 nmol) significantly reversed CFA-induced mechanical pain, thermal heat pain, and hind paw edema. Notably, a higher dose (20 nmol) of HS-131 was required to achieve analgesic and anti-inflammatory effects in females. Here, we provide the first demonstration that inflammation leads to an upregulation of eHsp90 on DRG nociceptors in a sex-dependent manner and that inhibition of eHsp90 reduces nociceptor activity, pain, and inflammation. Thus, eHsp90 represents a novel therapeutic axis for the development of gender-tailored treatments for inflammatory pain.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Nociceptores , Proteómica , Animales , Estrógenos/uso terapéutico , Femenino , Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Nociceptores/fisiología , Dolor/tratamiento farmacológico
14.
Ann Med ; 54(1): 2885-2897, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269028

RESUMEN

BACKGROUND: Limited data are available to establish evidence-based management protocols for vestibulodynia (VBD), a chronic vulvar pain condition that affects approximately 14 million women in the U.S. For the purposes of the study, our group subdivided VBD subtypes that may benefit from different types of treatment: 1) VBD peripheral (VBD-p), characterized by pain localized to the vulvar vestibule and 2) VBD central (VBD-c), characterized by VBD alongside one or more other chronic overlapping pain conditions (e.g. irritable bowel syndrome, temporomandibular disorder, and fibromyalgia syndrome) that affect remote body regions. Here, we describe the rationale and design of an NIH-funded multicenter clinical trial comparing the effectiveness of topical and/or systemic medication for alleviating pain and normalizing pain- relevant biomarkers among women with VBD-p and VBD-c. METHODS: Participants will be randomly assigned to one of four parallel arms: peripheral treatment with 5% lidocaine + 0.5 mg/ml 0.02% oestradiol compound cream + oral placebo pill, 2) central treatment with the tricyclic antidepressant nortriptyline + placebo cream, 3) combined peripheral cream and central pill treatments, or 4) placebo cream and placebo pill. The treatment phase will last 16 weeks, with outcome measures and biomarkers assessed at 4 time points (0, 8, 16, and 24 weeks). First, we will compare the efficacy of treatments in alleviating pain using standardized tampon insertion with a numeric rating scale and self-reported pain on the short form McGill Pain Questionnaire. Next, we will compare the efficacy of treatments in improving perceived physical, mental, and sexual health using standardized questionnaires. Finally, we will measure cytokines and microRNAs in local vaginal and circulating blood samples using multiplex assays and RNA sequencing, and determine the ability of these biomarkers to predict treatment response. CONCLUSION: This is the first multicenter randomized controlled trial to evaluate the efficacy of peripherally and centrally acting medications currently used in clinical practice for treating unique VBD subtypes based on distinct clinical and biological signatures. ADMINISTRATIVE INFORMATION: Vestibulodynia UPDATe is a multi-centre, two-by-two factorial designed randomized, double-blind, placebo-controlled trial registered at clinical trials.gov (NCT03844412). This work is supported by the R01 HD096331 awarded to Drs. Nackley, Rapkin, Geller and Carey by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).Key messagesPeripheral lidocaine and oestradiol and centrally-targeted nortriptyline medications are used for the treatment of pain in women with VBD, but there is a lack of data from well-powered RCTs.This two-by-two factorial RCT will test the efficacy of these medications in VBD subtypes characterized by distinct clinical characteristics and biomarker profiles.We hope that results will provide clinicians with scientific evidence of therapeutic efficacy in distinct VBD subtypes in an effort to direct and optimize treatment approaches.


Asunto(s)
MicroARNs , Vulvodinia , Femenino , Humanos , Antidepresivos Tricíclicos/uso terapéutico , Citocinas/uso terapéutico , Estradiol/uso terapéutico , Lidocaína/uso terapéutico , MicroARNs/uso terapéutico , Nortriptilina/uso terapéutico , Dolor , Vulvodinia/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
15.
Sci Transl Med ; 14(644): eabj9954, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35544595

RESUMEN

The transition from acute to chronic pain is critically important but not well understood. Here, we investigated the pathophysiological mechanisms underlying the transition from acute to chronic low back pain (LBP) and performed transcriptome-wide analysis in peripheral immune cells of 98 participants with acute LBP, followed for 3 months. Transcriptomic changes were compared between patients whose LBP was resolved at 3 months with those whose LBP persisted. We found thousands of dynamic transcriptional changes over 3 months in LBP participants with resolved pain but none in those with persistent pain. Transient neutrophil-driven up-regulation of inflammatory responses was protective against the transition to chronic pain. In mouse pain assays, early treatment with a steroid or nonsteroidal anti-inflammatory drug (NSAID) also led to prolonged pain despite being analgesic in the short term; such a prolongation was not observed with other analgesics. Depletion of neutrophils delayed resolution of pain in mice, whereas peripheral injection of neutrophils themselves, or S100A8/A9 proteins normally released by neutrophils, prevented the development of long-lasting pain induced by an anti-inflammatory drug. Analysis of pain trajectories of human subjects reporting acute back pain in the UK Biobank identified elevated risk of pain persistence for subjects taking NSAIDs. Thus, despite analgesic efficacy at early time points, the management of acute inflammation may be counterproductive for long-term outcomes of LBP sufferers.


Asunto(s)
Dolor Agudo , Dolor Crónico , Dolor de la Región Lumbar , Dolor Agudo/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Dolor de la Región Lumbar/tratamiento farmacológico , Ratones , Activación Neutrófila
16.
Front Immunol ; 12: 787565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950149

RESUMEN

The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 µm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Interleucina-23/toxicidad , Fibras Nerviosas Amielínicas/efectos de los fármacos , Nociceptores/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Dolor/inducido químicamente , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Humanos , Interleucina-17/metabolismo , Luz , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Amielínicas/metabolismo , Nociceptores/metabolismo , Optogenética , Dolor/genética , Dolor/metabolismo , Dolor/fisiopatología , Caracteres Sexuales , Células THP-1 , Canales Catiónicos TRPV/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Sleep ; 44(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33034629

RESUMEN

Poor sleep quality can have harmful health consequences. Although many aspects of sleep are heritable, the understandings of genetic factors involved in its physiology remain limited. Here, we performed a genome-wide association study (GWAS) using the Pittsburgh Sleep Quality Index (PSQI) in a multi-ethnic discovery cohort (n = 2868) and found two novel genome-wide loci on chromosomes 2 and 7 associated with global sleep quality. A meta-analysis in 12 independent cohorts (100 000 individuals) replicated the association on chromosome 7 between NPY and MPP6. While NPY is an important sleep gene, we tested for an independent functional role of MPP6. Expression data showed an association of this locus with both NPY and MPP6 mRNA levels in brain tissues. Moreover, knockdown of an orthologue of MPP6 in Drosophila melanogaster sleep center neurons resulted in decreased sleep duration. With convergent evidence, we describe a new locus impacting human variability in sleep quality through known NPY and novel MPP6 sleep genes.


Asunto(s)
Drosophila melanogaster , Estudio de Asociación del Genoma Completo , Animales , Etnicidad , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana , Neuronas , Polimorfismo de Nucleótido Simple/genética , Sueño/genética
18.
Mol Pain ; 6: 33, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20525224

RESUMEN

BACKGROUND: Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to mu-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH). In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood. RESULTS: We recently discovered a new human alternatively spliced isoform of MOR (MOR1K) that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO) release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Galphai/o complex, MOR1K couples to the stimulatory Galphas complex. CONCLUSION: The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.


Asunto(s)
Empalme Alternativo , Analgésicos Opioides/farmacología , Morfina/farmacología , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/genética , Analgésicos Opioides/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Morfina/metabolismo , Óxido Nítrico/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Opioides mu/agonistas
19.
Trends Genet ; 23(12): 605-13, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18023497

RESUMEN

Pain is emotionally detrimental and consciously avoided; however, it is absolutely crucial for our survival. Pain perception is one of the most complicated measurable traits because it is an aggregate of several phenotypes associated with peripheral and central nervous system dynamics, stress responsiveness and inflammatory state. As a complex trait, it is expected to have a polygenic nature shaped by environmental pressures. Here we discuss what is known about these contributing genetic variants, including recent discoveries that show a crucial role of voltage-gated sodium channel Nav1.7 in pain perception and how we can advance our understanding of the pain genetic network. We propose how both rare deleterious genetic variants and common genetic polymorphisms are mediators of human pain perception and clinical pain phenotypes.


Asunto(s)
Mapeo Cromosómico , Dolor/genética , Percepción/fisiología , Animales , Modelos Animales de Enfermedad , Variación Genética , Genotipo , Cefalea/genética , Humanos , Modelos Biológicos , Dolor/clasificación , Dolor/patología , Fenotipo , Trastornos Psicofisiológicos/patología , Transducción de Señal/genética
20.
Pain ; 161(2): 446-458, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31972854

RESUMEN

Low levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, and stress, which potentiates catecholamine release from sympathetic nerves, are fundamental to chronic functional pain syndromes and comorbid depression, which predominantly affect females. Here, we sought to examine the independent and joint contributions of low COMT and stress to chronic functional pain and depression at the behavioral and molecular level. Male and female C57BL/6 mice received sustained systemic delivery of the COMT inhibitor OR486 over 14 days and underwent a swim stress paradigm on days 8 to 10. Pain and depressive-like behavior were measured over 14 days, and brain-derived neurotrophic factor (BDNF; a factor involved in nociception and depression) and glucocorticoid receptor (GR; a stress-related receptor) expression were measured on day 14. We found that stress potentiates the effect of low COMT on functional pain and low COMT potentiates the effect of stress on depressive-like behavior. The joint effects of low COMT and stress on functional pain and depressive-like behavior were significantly greater in females vs males. Consistent with behavioral data, we found that stress potentiates COMT-dependent increases in spinal BDNF and low COMT potentiates stress-dependent decreases in hippocampal BDNF in females, but not males. Although low COMT increases spinal GR and stress increases hippocampal GR expression, these increases are not potentiated in the OR486 + stress group and are not sex-specific. These results suggest that genetic and environmental factors that enhance catecholamine bioavailability cause abnormalities in BDNF signaling and increase risk of comorbid functional pain and depression, especially among females.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Dolor Crónico/metabolismo , Depresión/metabolismo , Hipocampo/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catecol O-Metiltransferasa/metabolismo , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Depresión/fisiopatología , Depresión/psicología , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Factores Sexuales , Médula Espinal/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA