Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Genet ; 19(1): e1010627, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706157

RESUMEN

Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Roturas del ADN de Doble Cadena , Cromatina/genética , Cromatina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Intercambio Genético , Reparación del ADN , Cromosomas/genética , Cromosomas/metabolismo , Meiosis/genética
2.
PLoS Genet ; 19(2): e1010666, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809245

RESUMEN

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Ratones , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Emparejamiento Cromosómico , Segregación Cromosómica , Mamíferos/genética , Meiosis , Profase Meiótica I , Complejo Sinaptonémico/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33883277

RESUMEN

The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis/fisiología , Recombinación Genética/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/genética , Cromosomas/metabolismo , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinasa Rad51/metabolismo , Recombinación Genética/genética
4.
PLoS Genet ; 16(1): e1008529, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917788

RESUMEN

Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Dietilhexil Ftalato/toxicidad , Oogénesis , Oogonios/efectos de los fármacos , Plastificantes/toxicidad , Animales , Apoptosis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oogonios/citología , Oogonios/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
FASEB J ; 34(6): 8475-8492, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32385951

RESUMEN

Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well-established stress assays and well-characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp-1) or fusion (OPA1/eat-3, MFN/fzo-1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat-3 and fzo-1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.


Asunto(s)
Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Estrés Oxidativo/fisiología , Estrés Fisiológico/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Orgánulos/metabolismo
6.
PLoS Genet ; 14(11): e1007701, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30383767

RESUMEN

Breast cancer susceptibility gene 1 (BRCA1) and binding partner BRCA1-associated RING domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage repair and homologous recombination. The Caenorhabditis elegans orthologs, BRC-1 and BRD-1, also function in DNA damage repair, homologous recombination, as well as in meiosis. Using functional GFP fusions we show that in mitotically-dividing germ cells BRC-1 and BRD-1 are nucleoplasmic with enrichment at foci that partially overlap with the recombinase RAD-51. Co-localization with RAD-51 is enhanced under replication stress. As cells enter meiosis, BRC-1-BRD-1 remains nucleoplasmic and in foci, and beginning in mid-pachytene the complex co-localizes with the synaptonemal complex. Following establishment of the single asymmetrically positioned crossover on each chromosome pair, BRC-1-BRD-1 concentrates to the short arm of the bivalent. Localization dependencies reveal that BRC-1 and BRD-1 are interdependent and the complex fails to properly localize in both meiotic recombination and chromosome synapsis mutants. Consistent with a role for BRC-1-BRD-1 in meiotic recombination in the context of the synaptonemal complex, inactivation of BRC-1 or BRD-1 enhances the embryonic lethality of mutants defective in chromosome synapsis. Our data suggest that under meiotic dysfunction, BRC-1-BRD-1 stabilizes the RAD-51 filament and alters the recombination landscape; these two functions can be genetically separated from BRC-1-BRD-1's role in the DNA damage response. Together, we propose that BRC-1-BRD-1 serves a checkpoint function at the synaptonemal complex where it monitors and modulates meiotic recombination.


Asunto(s)
Proteína BRCA1/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Meiosis/genética , Recombinación Genética , Complejo Sinaptonémico/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Alelos , Animales , Proteína BRCA1/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Replicación del ADN , Embrión no Mamífero , Genes Reporteros , Células Germinativas , Transporte de Proteínas , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
7.
PLoS Biol ; 10(8): e1001378, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927794

RESUMEN

Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Cromátides/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Profase Meiótica I , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Intercambio Genético , Reparación del ADN , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36137547

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Roturas del ADN de Doble Cadena , Animales , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparación del ADN , Meiosis , ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
9.
Curr Biol ; 30(7): 1329-1338.e7, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32142707

RESUMEN

Interhomolog crossovers (COs) are a prerequisite for achieving accurate chromosome segregation during meiosis [1, 2]. COs are not randomly positioned, occurring at distinct genomic intervals during meiosis in all species examined [3-10]. The role of CO position as a major determinant of accurate chromosome segregation has not been previously directly analyzed in a metazoan. Here, we use spo-11 mutants, which lack endogenous DNA double-strand breaks (DSBs), to induce a single DSB by Mos1 transposon excision at defined chromosomal locations in the C. elegans germline and show that the position of the resulting CO directly affects the formation of distinct chromosome subdomains during meiotic chromosome remodeling. CO formation in the typically CO-deprived center region of autosomes leads to premature loss of sister chromatid cohesion and chromosome missegregation, whereas COs at an off-centered position, as in wild type, can result in normal remodeling and accurate segregation. Ionizing radiation (IR)-induced DSBs lead to the same outcomes, and modeling of IR dose-response reveals that the CO-unfavorable center region encompasses up to 6% of the total chromosome length. DSBs proximal to telomeres rarely form COs, likely because of formation of unstable recombination intermediates that cannot be sustained as chiasmata until late prophase. Our work supports a model in which regulation of CO position early in meiotic prophase is required for proper designation of chromosome subdomains and normal chromosome remodeling in late meiotic prophase I, resulting in accurate chromosome segregation and providing a mechanism to prevent aneuploid gamete formation.


Asunto(s)
Caenorhabditis elegans/genética , Segregación Cromosómica/genética , Cromosomas/genética , Meiosis , Animales , Roturas del ADN de Doble Cadena
10.
Exp Neurol ; 310: 58-69, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30194957

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the formation of α-synuclein-containing protein aggregates called Lewy bodies within the brain. A crucial role for α-synuclein in the pathogenesis of PD is also suggested by the fact that point mutations, increased copy number, or polymorphisms in the α-synuclein gene SNCA all cause or contribute to the development of PD. In addition to SNCA, an increasing number of other genes have been implicated in PD. While mutations in at least some of these genes have been shown to cause the formation of Lewy bodies, the role of α-synuclein in these genetic forms of PD remains poorly defined. Since C. elegans do not have a homolog of α-synuclein, this organism provides the opportunity to identify synergism between α-synuclein and other genes implicated in PD. To do this, we generated a novel C. elegans model in which wild-type α-synuclein is ubiquitously expressed from a single copy transgene, and examined the resulting effect on phenotypic deficits in PD deletion mutants affecting PARK2/pdr-1, PINK1/pink-1, DJ-1/djr-1.1 and ATP13A2/catp-6. While the PD deletion mutants exhibit only mild phenotypic deficits in absence of α-synuclein, expression of wild-type α-synuclein caused increased sensitivity to multiple stresses, induced deficits in dopamine-dependent behavior, and accelerated loss of dopamine neurons. Overall, these results suggest that the recessive loss of function mutations act together with α-synuclein to cause PD, and that α-synuclein lowering strategies may be effective in genetic forms of PD.


Asunto(s)
Regulación de la Expresión Génica/genética , Neuronas/patología , Estrés Oxidativo/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Factores de Edad , Animales , Animales Modificados Genéticamente , Síntomas Conductuales/etiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Dosificación de Gen/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedad de Parkinson/complicaciones , Estimulación Física , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/genética
11.
Elife ; 62017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346135

RESUMEN

The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of recombination-initiating double-strand breaks (DSBs) via a feedback loop triggered by crossover designation in C. elegans. We found that SYP-4 is phosphorylated dependent on Polo-like kinases PLK-1/2. SYP-4 phosphorylation depends on DSB formation and crossover designation, is required for stabilizing the SC in pachytene by switching the central region of the SC from a more dynamic to a less dynamic state, and negatively regulates DSB formation. We propose a model in which Polo-like kinases recognize crossover designation and phosphorylate SYP-4 thereby stabilizing the SC and making chromosomes less permissive for further DSB formation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Roturas del ADN de Doble Cadena , Retroalimentación Fisiológica , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Fosforilación
13.
Elife ; 5: e12039, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920220

RESUMEN

Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Intercambio Genético , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Meiosis , Procesamiento Proteico-Postraduccional , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans , Línea Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo
14.
PLoS One ; 10(2): e0117444, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25688864

RESUMEN

RIO protein kinases (RIOKs) are a relatively conserved family of enzymes implicated in cell cycle control and ribosomal RNA processing. Despite their functional importance, they remain a poorly understood group of kinases in multicellular organisms. Here, we show that the C. elegans genome contains one member of each of the three RIOK sub-families and that each of the genes coding for them has a unique tissue expression pattern. Our analysis showed that the gene encoding RIOK-1 (riok-1) was broadly and strongly expressed. Interestingly, the intestinal expression of riok-1 was dependent upon two putative binding sites for the oxidative and xenobiotic stress response transcription factor SKN-1. RNA interference (RNAi)-mediated knock down of riok-1 resulted in germline defects, including defects in germ line stem cell proliferation, oocyte maturation and the production of endomitotic oocytes. Taken together, our findings indicate new functions for RIOK-1 in post mitotic tissues and in reproduction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/clasificación , Proliferación Celular , Femenino , Genoma , Células Germinativas/citología , Células Germinativas/metabolismo , Gónadas/metabolismo , Masculino , Filogenia , Regiones Promotoras Genéticas , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , Alineación de Secuencia
15.
Genetics ; 195(3): 1181-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23979579

RESUMEN

We adapted the CRISPR-Cas9 system for template-mediated repair of targeted double-strand breaks via homologous recombination in Caenorhabditis elegans, enabling customized and efficient genome editing. This system can be used to create specific insertions, deletions, and base pair changes in the germline of C. elegans.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Genoma de los Helmintos , Animales , Roturas del ADN de Doble Cadena , ADN de Helmintos/genética , Marcación de Gen , Ingeniería Genética , Recombinación Homóloga , Mutagénesis , Mutagénesis Insercional , Edición de ARN/genética
16.
Development ; 136(13): 2211-21, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19502483

RESUMEN

Soma-germline interactions control fertility at many levels, including stem cell proliferation, meiosis and gametogenesis, yet the nature of these fundamental signaling mechanisms and their potential evolutionary conservation are incompletely understood. In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and fertilization. Sperm release the major sperm protein (MSP) signal to trigger meiotic resumption (meiotic maturation) and to promote contraction of the follicle-like gonadal sheath cells that surround oocytes. Using genetic mosaic analysis, we show that all known MSP-dependent meiotic maturation events in the germline require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells. We show that the MSP hormone promotes the sustained actomyosin-dependent cytoplasmic streaming that drives oocyte growth. Furthermore, we demonstrate that efficient oocyte production and cytoplasmic streaming require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells, thereby providing a somatic mechanism that coordinates oocyte growth and meiotic maturation with sperm availability. We present genetic evidence that MSP and Galpha(s)-adenylate cyclase signaling regulate oocyte growth and meiotic maturation in part by antagonizing gap-junctional communication between sheath cells and oocytes. In the absence of MSP or Galpha(s)-adenylate cyclase signaling, MSP binding sites are enriched and appear clustered on sheath cells. We discuss these results in the context of a model in which the sheath cells function as the major initial sensor of MSP, potentially via multiple classes of G-protein-coupled receptors. Our findings highlight a remarkable similarity between the regulation of meiotic resumption by soma-germline interactions in C. elegans and mammals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , AMP Cíclico/metabolismo , Proteínas del Helminto/metabolismo , Meiosis/fisiología , Oocitos/fisiología , Sistemas de Mensajero Secundario/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Uniones Comunicantes/química , Uniones Comunicantes/metabolismo , Gónadas/citología , Gónadas/embriología , Proteínas del Helminto/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mosaicismo , Oocitos/citología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Development ; 136(13): 2223-34, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19502484

RESUMEN

Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for fertilization and the major sperm protein (MSP) hormone is present. Reduction-of-function mutations in glp-1 cause oocytes to grow abnormally large when MSP is present and Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells is active. By contrast, gain-of-function glp-1 mutations lead to the production of small oocytes. Surprisingly, proper oocyte growth depends on distal tip cell signaling involving the redundant function of GLP-1 ligands LAG-2 and APX-1. GLP-1 signaling also affects two cellular oocyte growth processes, actomyosin-dependent cytoplasmic streaming and oocyte cellularization. glp-1 reduction-of-function mutants exhibit elevated rates of cytoplasmic streaming and delayed cellularization. GLP-1 signaling in oocyte growth depends in part on the downstream function of the FBF-1/2 PUF RNA-binding proteins. Furthermore, abnormal oocyte growth in glp-1 mutants, but not the inappropriate differentiation of germline stem cells, requires the function of the cell death pathway. The data support a model in which GLP-1 function in MSP-dependent oocyte growth is separable from its role in the proliferation versus meiotic entry decision. Thus, two major germline signaling centers, distal GLP-1 activation and proximal MSP signaling, coordinate several spatially and temporally distinct processes by which germline stem cells differentiate into functional oocytes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Corriente Citoplasmática/fisiología , Proteínas del Helminto/metabolismo , Glicoproteínas de Membrana/metabolismo , Oocitos/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Actinas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes Reporteros , Proteínas del Helminto/genética , Glicoproteínas de Membrana/genética , Miosinas/metabolismo , Oocitos/citología , Receptores Notch/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA