Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(12): 4199-4216, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647532

RESUMEN

Breeding has dramatically changed the plant architecture of wheat (Triticum aestivum), resulting in the development of high-yielding varieties adapted to modern farming systems. However, how wheat breeding shaped the genomic architecture of this crop remains poorly understood. Here, we performed a comprehensive comparative analysis of a whole-genome resequencing panel of 355 common wheat accessions (representing diverse landraces and modern cultivars from China and the United States) at the phenotypic and genomic levels. The genetic diversity of modern wheat cultivars was clearly reduced compared to landraces. Consistent with these genetic changes, most phenotypes of cultivars from China and the United States were significantly altered. Of the 21 agronomic traits investigated, 8 showed convergent changes between the 2 countries. Moreover, of the 207 loci associated with these 21 traits, more than half overlapped with genomic regions that showed evidence of selection. The distribution of selected loci between the Chinese and American cultivars suggests that breeding for increased productivity in these 2 regions was accomplished by pyramiding both shared and region-specific variants. This work provides a framework to understand the genetic architecture of the adaptation of wheat to diverse agricultural production environments, as well as guidelines for optimizing breeding strategies to design better wheat varieties.


Asunto(s)
Genoma de Planta , Triticum , Estados Unidos , Triticum/genética , Genoma de Planta/genética , Fitomejoramiento , Fenotipo , China , Variación Genética
2.
Am J Hum Genet ; 108(2): 324-336, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508233

RESUMEN

Human infertility is a multifactorial disease that affects 8%-12% of reproductive-aged couples worldwide. However, the genetic causes of human infertility are still poorly understood. Synaptonemal complex (SC) is a conserved tripartite structure that holds homologous chromosomes together and plays an indispensable role in the meiotic progression. Here, we identified three homozygous mutations in the SC coding gene C14orf39/SIX6OS1 in infertile individuals from different ethnic populations by whole-exome sequencing (WES). These mutations include a frameshift mutation (c.204_205del [p.His68Glnfs∗2]) from a consanguineous Pakistani family with two males suffering from non-obstructive azoospermia (NOA) and one female diagnosed with premature ovarian insufficiency (POI) as well as a nonsense mutation (c.958G>T [p.Glu320∗]) and a splicing mutation (c.1180-3C>G) in two unrelated Chinese men (individual P3907 and individual P6032, respectively) with meiotic arrest. Mutations in C14orf39 resulted in truncated proteins that retained SYCE1 binding but exhibited impaired polycomplex formation between C14ORF39 and SYCE1. Further cytological analyses of meiosis in germ cells revealed that the affected familial males with the C14orf39 frameshift mutation displayed complete asynapsis between homologous chromosomes, while the affected Chinese men carrying the nonsense or splicing mutation showed incomplete synapsis. The phenotypes of NOA and POI in affected individuals were well recapitulated by Six6os1 mutant mice carrying an analogous mutation. Collectively, our findings in humans and mice highlight the conserved role of C14ORF39/SIX6OS1 in SC assembly and indicate that the homozygous mutations in C14orf39/SIX6OS1 described here are responsible for infertility of these affected individuals, thus expanding our understanding of the genetic basis of human infertility.


Asunto(s)
Azoospermia/genética , Mutación , Insuficiencia Ovárica Primaria/genética , Adulto , Azoospermia/fisiopatología , Emparejamiento Cromosómico , Codón sin Sentido , Proteínas de Unión al ADN/metabolismo , Femenino , Homocigoto , Humanos , Masculino , Meiosis , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Linaje , Insuficiencia Ovárica Primaria/fisiopatología , Espermatocitos/metabolismo , Espermatocitos/fisiología , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Secuenciación Completa del Genoma
3.
BMC Plant Biol ; 24(1): 125, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38373884

RESUMEN

BACKGROUND: Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). RESULTS: The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. CONCLUSIONS: Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress.


Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Triticum/genética , Níquel/toxicidad , Níquel/metabolismo , Fosfatos/metabolismo , ARN Ribosómico 16S/genética , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Zinc/metabolismo , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/metabolismo
4.
BMC Plant Biol ; 24(1): 564, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879470

RESUMEN

BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Evolución Molecular , Filogenia , Genes de Plantas
5.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466437

RESUMEN

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Theileria , Garrapatas , Femenino , Bovinos , Animales , Ovinos , Anaplasma marginale/genética , Theileria/genética , Pakistán/epidemiología , Anaplasma/genética , Prevalencia , Garrapatas/microbiología , Garrapatas/parasitología , Filogenia , Anaplasmosis/epidemiología , Anaplasmosis/microbiología
6.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096052

RESUMEN

Microalgal, species are recognized for their high protein content, positioning them as a promising source of this macronutrient. Spirulina platensis, in particular, is noteworthy for its rich protein levels (70 g/100 g dw), which are higher than those of meat and legumes. Incorporating this microalgae into food can provide various benefits to human health due to its diverse chemical composition, encompassing high amount of protein and elevated levels of minerals, phenolics, essential fatty acids, and pigments. Conventional techniques employed for protein extraction from S. platensis have several drawbacks, prompting the exploration of innovative extraction techniques (IETs) to overcome these limitations. Recent advancements in extraction methods include ultrasound-assisted extraction, microwave-assisted extraction, high-pressure-assisted extraction, supercritical fluid extraction, pulse-electric field assisted extraction, ionic liquids assisted extraction, and pressurized liquid extraction. These IETs have demonstrated efficiency in enhancing protein yield of high quality while maximizing biomass utilization. This comprehensive review delves into the mechanisms, applications, and drawbacks associated with implementing IETs in protein extraction from S. platensis. Notably, these innovative methods offer advantages such as increased extractability, minimized protein denaturation, reduced solvent consumption, and lower energy consumption. However, safety considerations and the synergistic effects of combined extraction methods warrant further exploration and investigation of their underlying mechanisms.

7.
Microb Cell Fact ; 23(1): 164, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834993

RESUMEN

BACKGROUND: Optically active D-amino acids are widely used as intermediates in the synthesis of antibiotics, insecticides, and peptide hormones. Currently, the two-enzyme cascade reaction is the most efficient way to produce D-amino acids using enzymes DHdt and DCase, but DCase is susceptible to heat inactivation. Here, to enhance the enzymatic activity and thermal stability of DCase, a rational design software "Feitian" was developed based on kcat prediction using the deep learning approach. RESULTS: According to empirical design and prediction of "Feitian" software, six single-point mutants with high kcat value were selected and successfully constructed by site-directed mutagenesis. Out of six, three mutants (Q4C, T212S, and A302C) showed higher enzymatic activity than the wild-type. Furthermore, the combined triple-point mutant DCase-M3 (Q4C/T212S/A302C) exhibited a 4.25-fold increase in activity (29.77 ± 4.52 U) and a 2.25-fold increase in thermal stability as compared to the wild-type, respectively. Through the whole-cell reaction, the high titer of D-HPG (2.57 ± 0.43 mM) was produced by the mutant Q4C/T212S/A302C, which was about 2.04-fold of the wild-type. Molecular dynamics simulation results showed that DCase-M3 significantly enhances the rigidity of the catalytic site and thus increases the activity of DCase-M3. CONCLUSIONS: In this study, an efficient rational design software "Feitian" was successfully developed with a prediction accuracy of about 50% in enzymatic activity. A triple-point mutant DCase-M3 (Q4C/T212S/A302C) with enhanced enzymatic activity and thermostability was successfully obtained, which could be applied to the development of a fully enzymatic process for the industrial production of D-HPG.


Asunto(s)
Aprendizaje Profundo , Estabilidad de Enzimas , Mutagénesis Sitio-Dirigida
8.
Cancer Treat Res ; 191: 281-307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133412

RESUMEN

The term "cancer" refers to the state in which cells in the body develop mutations and lose control over their replication. Malignant cancerous cells invade in various other tissue sites of the body. Chemotherapy, radiation, and surgery are the first-line modalities for the majority of solid cancers. These treatments work by mitigating the DNA damage of cancerous cells, but they can also cause harm to healthy cells. These side effects might be immediate or delayed, and they can cause a high rate of morbidity and mortality. Dietary interventions have a profound impact on whole-body metabolism, including immunometabolism and oncometabolism which have been shown to reduce cancer growth, progression, and metastasis in many different solid tumor models with promising outcomes in early phase clinical studies. Dietary interventions can improve oncologic or quality-of-life outcomes for patients that are undergoing chemotherapy or radiotherapy. In this chapter, we will focus on the impact of nutritional deficiencies, several dietary interventions and their proposed mechanisms which are used as a novel therapy in controlling and managing cancers.


Asunto(s)
Neoplasias , Humanos , Neoplasias/dietoterapia , Neoplasias/terapia , Estado Nutricional , Dieta
9.
Physiol Plant ; 176(1): e14183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343301

RESUMEN

Roots are the main sensing organ, initiating multiple signaling pathways in response to abiotic factors, including nutrients, drought, and salt stress. A focus on improving the root system architecture is a key strategy to mitigate these stresses in wheat crop. In the present study, a diversity panel comprising indigenous landraces and historical cultivars from Pakistan was characterized for the root system architecture (RSA) and important loci were identified using a genome-wide association study (GWAS). RSA of the diversity panel was characterized 30 days after sowing in brunch tubes, and root images were taken. A high-throughput root imaging analysis using Rhizovision software was performed by setting the scale to extract the eight RSA traits and four plant biomass-related traits. GWAS identified 323 association signals for 12 root and biomass traits present on all wheat chromosomes, while the most important and reliable genetic loci (based on pleotropic loci and candidate genes) were identified on chromosomes 2A, 2B, 5A, 5D, 6A, 7B, and 7D for RSA. SNP annotation and transcriptome profiling identified nine candidate genes regulating the RSA and plant biomass traits, including ROOTLESS WITH UNDETECTABLE MERISTEM1, MYB TRANSCRIPTION FACTOR4, BRASSINOSTEROID INSENSITIVE1, SLENDER RICE1, AUXIN-RESPONSIVE FACTOR25, SCARECROW, NARROW LEAF2, PIN-FORMED1 AND PHOSPHATE TRANSCRIPTION FACTOR1. This study provided pre-breeding information for deep-rooting genotypes and associated markers that will accelerate the incorporation of such traits in breeding.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Genotipo , Polimorfismo de Nucleótido Simple
10.
Kidney Blood Press Res ; 49(1): 173-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38350434

RESUMEN

INTRODUCTION: Renal function may be compromised following recovery from kidney insults. Renal functional reserve (RFR) is a measure of the difference between the kidney's maximum capacity and its baseline function, which helps identify any areas of the kidney with compromised function. Usually, RFR is evaluated using acute volume expansion (AVE), but this is typically done in anesthetized animals, which may not accurately represent the kidney's complete functional capacity. In this study, we have introduced a novel method that enables AVE to be conducted in conscious mice. METHODS: We have implemented this innovative approach in two animal models representing either intact or impaired renal function, specifically utilizing a lower nephron hypertensive model. Mice were implanted with radio-transmitters for mean artery blood pressure (MAP) monitoring during the experiment. After recovery, half of the mice were induced hypertension by right kidney nephrectomy combined with the ligation of the upper branch of the left kidney. For the AVE, a volume equivalent to 5% of the mouse's body weight was administered via intravenous (IV) or intraperitoneal bolus injection. Subsequently, the mice were individually housed in cages covered with plastic wrap. Urine was collected every hour for a total of 3 h for the measurement of urine and sodium excretion. RESULTS: The MAPs for all normotensive mice were consistent throughout the AVE, but it increased 5-16 mm Hg in the hypertensive mice upon AVE. Remarkably, conscious mice exhibited a significantly stronger response to IV-administered AVE when compared to anesthetized mice. This response was evident in the increase in urinary flow, which was approximately 170% and 145% higher in conscious normotensive and hypertensive mice, respectively, compared to their respective baselines. In contrast, anesthetized normotensive and hypertensive mice showed only around a 130% and 100% increase in urinary flow, respectively. Additionally, upon AVE, conscious normotensive mice excreted approximately 47% more sodium than conscious hypertensive mice. In contrast, anesthetized normotensive mice excreted only about 30% more sodium than their anesthetized hypertensive counterparts. CONCLUSION: Performing a kidney stress test with a significant solution load in conscious mice seems to be a superior method for evaluating RFR compared to conducting the test under anesthesia. Assessing kidney clearance while the mice are conscious has the potential to enhance the precision of diagnosing and predicting both acute and chronic kidney diseases.


Asunto(s)
Hipertensión , Riñón , Animales , Ratones , Riñón/fisiopatología , Hipertensión/fisiopatología , Hipertensión/etiología , Hemodinámica , Presión Sanguínea/fisiología , Estado de Conciencia , Modelos Animales de Enfermedad , Masculino
11.
Environ Res ; 247: 118152, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220072

RESUMEN

Open dumping of Municipal solid waste is the main method of solid waste management in Pakistan. To investigate the impacts of leachate transportation from these waste dumps on groundwater quality, two sites were selected (I-12 in Islamabad and Lohsar in Rawalpindi), water samples were collected from existing wells during summer, winter, and rainy seasons and were analyzed for physiochemical parameters using standard methods. Most groundwater samples showed contamination and values of various parameters exceeded the desired limits set by the World Health Organization (WHO) and the National Standard for Drinking Water Quality (NSDWQ), especially during the rainy season, whereas the least contamination in groundwater samples was observed during the winter season. The results obtained were, pH: 5.75-7.87, Electrical Conductivity (EC): 103-3460 µS cm-1, Total Dissolved Solids (TDS): 436-4425 mg L-1, Total Alkalinity (TA): 190-1330 mg L-1, Total Hardness (TH): 128-676 mg L-1, Chlorides (Cl⁻): 56.7-893.3 mg L-1, Nitrates (NO3⁻): 7.8-19.9 mg L-1, Dissolved Oxygen (DO): 6.1-20.8 mg L-1, Biological Oxygen Demand (BOD): 1.0-44.0 mg L-1 and Chemical Oxygen Demand (COD): 56-272 mg L-1. The findings suggest that the magnitude of groundwater contamination from leachate transportation is intricately influenced by factors such as leachate composition, seasonal variations and distance from the dumpsite. The contamination level reduced along the distance from the dumps. Except Copper (Cu) and Zinc (Zn), the concentration of all other heavy metals including, Iron (Fe), Chromium (Cr), Nickel (Ni), Lead (Pb), Cadmium (Cd) was found above standard appreciable limits. The t-test showed a significant difference in parameter concentrations for all seasons except for Cd and Zn. The calculation of water quality index through CCME (Canadian Council of Ministers of Environment) model revealed that all the groundwater samples around both the dump sites were of poor and marginal quality. In general, the groundwater quality of both study areas is not suitable for the drinking purpose. The study suggests regular testing and treating groundwater before use, use of engineered landfills, covering landfills with clay and vegetation and use of alternative strategies like composting and recycling for waste management.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Residuos Sólidos , Monitoreo del Ambiente/métodos , Cadmio , Contaminantes Químicos del Agua/análisis , Canadá , Agua Subterránea/química , Metales Pesados/análisis , Instalaciones de Eliminación de Residuos , Zinc
12.
Nutr Metab Cardiovasc Dis ; 34(5): 1166-1174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403482

RESUMEN

BACKGROUND AND AIM: Growing body of evidence consistently link obesity and inflammation, Although the direction of the association is still unclear. We aimed to investigate longitudinal associations of body anthropometric, composition and fat distribution parameters with inflammatory markers and vice versa. METHOD AND RESULTS: We used data from 2464 individuals of the SHIP-TREND cohort with a median follow-up of 7 years. Linear regression models adjusted for confounders were used to analyze associations of standardized body composition markers derived from classic anthropometry, bioelectrical impedance analysis (BIA) and magnetic resonance imaging (MRI) at baseline with changes in inflammatory markers (C-reactive protein (CRP), white blood cell (WBC), fibrinogen) and vice versa. Higher level of anthropometric markers at baseline were associated with an increase in the change of inflammatory markers. A 13.5 cm higher waist circumference (WC), 16.0 kg body weight and 7.76 % relative fat mass (FM) at baseline was associated with a change in CRP of 0.52 mg/L (95 % confidence interval [CI]: 0.29 to 0.74), 0.51 mg/L (95 % CI: 0.29; 0.74) and 0.58 mg/L (95 % CI: 0.34; 0.82) respectively. Absolute FM showed the strongest association with changes in serum fibrinogen levels (ß for 8.69 kg higher FM: 0.07 g/L; 95 % CI: 0.05; 0.09). Baseline inflammatory markers were only associated with changes in hip circumference. CONCLUSION: Our study indicates the importance of anthropometric, body composition and fat distribution markers as a risk factor for the development of inflammation. To prevent inflammatory-related complications, important is to take measures against the development of obesity.


Asunto(s)
Composición Corporal , Obesidad , Humanos , Índice de Masa Corporal , Obesidad/diagnóstico , Obesidad/epidemiología , Antropometría , Proteína C-Reactiva/análisis , Circunferencia de la Cintura , Inflamación/diagnóstico , Inflamación/epidemiología , Fibrinógeno/análisis , Fibrinógeno/metabolismo
13.
Mol Ther ; 31(12): 3490-3501, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37864333

RESUMEN

Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Ratones , Animales , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Mutación , Cadherinas/genética , Cadherinas/metabolismo
14.
Int J Phytoremediation ; 26(6): 975-992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37968930

RESUMEN

The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.


Nanocomposite of Maize offal biomass demonstrated higher dyes removal.FTIR, SEM, BET, XRD and pHPZC provided vital evidence for dyes adsorption.MOB/MNPs displayed excellent stability and reusability for dyes adsorption.Groundwater samples exposed a higher dyes removal.Results were validated with equilibrium and kinetic adsorption models.


Asunto(s)
Compuestos Azo , Nanocompuestos , Contaminantes Químicos del Agua , Rojo Congo , Colorantes/química , Zea mays , Biomasa , Biodegradación Ambiental , Adsorción , Iones , Agua , Nanocompuestos/química , Fenómenos Magnéticos , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
15.
J Environ Manage ; 360: 121211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788410

RESUMEN

This study investigates the relationship between financial technology (fintech) and environmental efficiency across G20 countries, emphasizing the moderating effect of foreign direct investment (FDI) from 2010 to 2022. Employing Data Envelopment Analysis (DEA) through both Slack-Based Measure (SBM) and Epsilon-Based Measure (EBM), alongside Tobit regression and the Generalized Method of Moments (GMM) for analytical rigor, the research reveals that fintech exerts a positive influence on environmental efficiency within these countries. Furthermore, it demonstrates that FDI contributes to enhancing environmental efficiency. However, when FDI is combined with fintech investments, it yields a negative impact. This detrimental effect stems from FDI's emphasis on short-term gains, rapid expansion, and a globally oriented supply chain that favors cost efficiency at the expense of sustainability. The study highlights the necessity for investments in fintech that comply with environmental standards and offers policy recommendations to improve environmental efficiency. It urges policymakers to promote environmentally sustainable investment practices within the fintech sector to aid in achieving sustainable development goals.


Asunto(s)
Inversiones en Salud , Desarrollo Sostenible , Tecnología , Conservación de los Recursos Naturales , Ambiente
16.
J Environ Manage ; 366: 121713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986368

RESUMEN

Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).


Asunto(s)
Celulosa , Carbón Orgánico , Lignina , Spirulina , Spirulina/química , Lignina/química , Celulosa/química , Carbón Orgánico/química , Populus/química , Carbono/química
17.
Environ Monit Assess ; 196(5): 458, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635016

RESUMEN

The poultry industry is a significant source of animal protein, vitamins, and minerals, particularly through the consumption of chicken meat. In order to conduct the study, 100 samples of liver, chicken feed, and drinking water were collected in nearby areas of Lahore. The investigation aims to detect the presence of specific heavy metals in the collected samples. For this purpose, atomic absorption spectroscopy (AAS) was used to detect heavy metals after proper preparation of the samples. The experimentally observed data were analyzed through a novel statistical approach known as neutrosophic statistics. It was observed that copper (Cu), zinc (Zn), and cadmium (Cd) were the most prominent metals detected with contamination above the safe limits (for chicken drinking water (Zn = 23.09±13.67 mg/L, Cu = 3.84±3.04 mg/L, Cd = 0.805±0.645 mg/L, Pb = 0.275±0.095 mg/L, As = 0.982±0.978 mg/L), for chicken feed (Zn = 2.705±0.715 mg/kg, Cu = 1.85±0.53 mg/kg, Cd = 3.065±1.185 mg/kg, Pb = 0.215±0.175 mg/kg, As = 0.68±0.22 mg/kg), and chicken's liver (Zn = 3.93±0.66 mg/kg, Cu = 1.2±0.52 mg/kg, Cd = 0.07±0.05 mg/kg, Pb = 0.805±0.775 mg/kg, As = 1.05±0.8 mg/kg)). Similarly, the statistical analysis leads that the findings emphasize the importance of monitoring and mitigating heavy metal contamination in the poultry industry to ensure the safety and quality of poultry products.


Asunto(s)
Agua Potable , Metales Pesados , Animales , Pollos , Cadmio , Pakistán , Plomo , Monitoreo del Ambiente , Zinc
18.
J Pak Med Assoc ; 74(4): 794-796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38751282

RESUMEN

Enbloc Sacrectomy is the procedure of choice for aggressive sacral lesions but not widely practiced in Pakistan, both by Neurosurgeons and Orthopaedic surgeons. Only one case has been mentioned in indexed local literature so far and that too not operated in Pakistan. The case of a 27 year old neurologically intact male is presented. He had a huge residual mass and midline non-healing wound after two attempts at intralesional debulking and one full course of local irradiation. He presented to the Mayo Hospital, Lahore on 29th December 2021 for a redo surgery of sacral chordoma. A marginal excision was achieved utilizing posterior only approach. This case will help to understand the key steps in enbloc mid-Sacrectomy and importance of involving multidisciplinary team for ensuring adequate wound closure.


Asunto(s)
Cordoma , Reoperación , Sacro , Neoplasias de la Columna Vertebral , Humanos , Cordoma/cirugía , Cordoma/diagnóstico por imagen , Masculino , Sacro/cirugía , Adulto , Neoplasias de la Columna Vertebral/cirugía , Reoperación/métodos
19.
Funct Integr Genomics ; 23(3): 243, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453947

RESUMEN

Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.


Asunto(s)
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Pigmentación/genética , Edición Génica
20.
Funct Integr Genomics ; 23(2): 172, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212893

RESUMEN

The cytochrome P450 superfamily of monooxygenases plays a major role in the evolution and diversification of plant natural products. The function of cytochrome P450s in physiological adaptability, secondary metabolism, and xenobiotic detoxification has been studied extensively in numerous plant species. However, their underlying regulatory mechanism in safflower still remained unclear. In this study, we aimed to elucidate the functional role of a putative CtCYP82G24-encoding gene in safflower, which suggests crucial insights into the regulation of methyl jasmonate-induced flavonoid accumulation in transgenic plants. The results showed that methyl jasmonate (MeJA) was associated with a progressive upregulation of CtCYP82G24 expression in safflower among other treatment conditions including light, dark, and polyethylene glycol (PEG). In addition, transgenic plants overexpressing CtCYP82G24 demonstrated increased expression level of other key flavonoid biosynthetic genes, such as AtDFR, AtANS, and AtFLS, and higher content of flavonoid and anthocyanin accumulation when compared with wild-type and mutant plants. Under exogenous MeJA treatment, the CtCYP82G24 transgenic overexpressed lines showed a significant spike in flavonoid and anthocyanin content compared with wild-type and mutant plants. Moreover, the virus-induced gene silencing (VIGS) assay of CtCYP82G24 in safflower leaves exhibited decreased flavonoid and anthocyanin accumulation and reduced expression of key flavonoid biosynthetic genes, suggesting a possible coordination between transcriptional regulation of CtCYP82G24 and flavonoid accumulation. Together, our findings confirmed the likely role of CtCYP82G24 during MeJA-induced flavonoid accumulation in safflower.


Asunto(s)
Carthamus tinctorius , Flavonoides , Antocianinas/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA