RESUMEN
Sialyl Lewis X (sLe(x)) antigen functions as a common carbohydrate determinant recognized by all three members of the selectin family. However, its expression and function in mice remain undefined due to the poor reactivity of conventional anti-sLe(x) monoclonal antibodies (mAbs) with mouse tissues. Here, we developed novel anti-sLe(x) mAbs, termed F1 and F2, which react well with both human and mouse sLe(x), by immunizing fucosyltransferase (FucT)-IV and FucT-VII doubly deficient mice with 6-sulfo-sLe(x)-expressing cells transiently transfected with an expression vector encoding CMP-N-acetylneuraminic acid hydroxylase. F1 and F2 specifically bound both the N-acetyl and the N-glycolyl forms of sLe(x) as well as 6-sulfo-sLe(x), a major ligand for L-selectin expressed in high endothelial venules, and efficiently blocked physiological lymphocyte homing to lymph nodes in mice. Importantly, both of the mAbs inhibited contact hypersensitivity responses not only when administered in the L-selectin-dependent sensitization phase but also when administered in the elicitation phase in mice. When administered in the latter phase, F1 and F2 efficiently blocked rolling of mouse leukocytes along blood vessels expressing P- and E-selectin in the auricular skin in vivo. Consistent with these findings, the mAbs blocked P- and E-selectin-dependent leukocyte rolling in a flow chamber assay. Taken together, these results indicate that novel anti-sLe(x) mAbs reactive with both human and mouse tissues, with the blocking ability against leukocyte trafficking mediated by all three selectins, have been established. These mAbs should be useful in determining the role of sLe(x) antigen under physiological and pathological conditions.