Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Pharm ; 21(2): 622-632, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38273445

RESUMEN

Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.


Asunto(s)
Doxorrubicina/análogos & derivados , Liposomas , Neoplasias , Ratones , Humanos , Animales , Composición de Medicamentos , Vacunas contra la COVID-19 , Inmunoglobulina M , Polietilenglicoles
2.
Small ; : e2302931, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525558

RESUMEN

Combinations of chemotherapeutic agents comprise a clinically feasible approach to combat cancers that possess resistance to treatment. Type II endometrial cancer is typically associated with poor outcomes and the emergence of chemoresistance. To overcome this challenge, a combination therapy is developed comprising a novel ciprofloxacin derivative-loaded PEGylated polymeric nanoparticles (CIP2b-NPs) and paclitaxel (PTX) against human type-II endometrial cancer (Hec50co with loss of function p53). Cytotoxicity studies reveal strong synergy between CIP2b and PTX against Hec50co, and this is associated with a significant reduction in the IC50 of PTX and increased G2/M arrest. Upon formulation of CIP2b into PEGylated polymeric nanoparticles, tumor accumulation of CIP2b is significantly improved compared to its soluble counterpart; thus, enhancing the overall antitumor activity of CIP2b when co-administered with PTX. In addition, the co-delivery of CIP2b-NPs with paclitaxel results in a significant reduction in tumor progression. Histological examination of vital organs and blood chemistry was normal, confirming the absence of any apparent off-target toxicity. Thus, in a mouse model of human endometrial cancer, the combination of CIP2b-NPs and PTX exhibits superior therapeutic activity in targeting human type-II endometrial cancer.

3.
Mol Pharm ; 17(9): 3643-3648, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786958

RESUMEN

Sympathetic excitation contributes to clinical deterioration in systolic heart failure (HF). Significant inhibition of hypothalamic paraventricular nucleus (PVN) ERK1/2 signaling and a subsequent reduction of plasma norepinephrine (NE) levels in HF rats were achieved 2 weeks after a single subcutaneous injection of PD98059-loaded polymeric microparticles, without apparent adverse events, while blank microparticles had no effect. Similar reductions in plasma NE, a general indicator of sympathetic excitation, were previously achieved in HF rats by intracerebroventricular infusion of PD98059 or genetic knockdown of PVN ERK1/2 expression. This study presents a clinically feasible therapeutic approach to the central abnormalities contributing to HF progression.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Animales , Química Farmacéutica/métodos , Modelos Animales de Enfermedad , Norepinefrina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
4.
Mol Pharm ; 14(6): 1929-1937, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28463518

RESUMEN

Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Betametasona/administración & dosificación , Betametasona/uso terapéutico , Inflamación/tratamiento farmacológico , Manosa/química , Nanopartículas/química , Animales , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Polietilenglicoles/química , Factor de Necrosis Tumoral alfa/metabolismo
5.
Pharm Res ; 34(6): 1224-1232, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28352993

RESUMEN

PURPOSE: This study was designed to test the short-term toxicity of DHA-dFdC in a mouse model and its efficacy in a mouse model of leukemia at or below its repeat-dose maximum tolerated dose (RD-MTD). METHOD: A repeat-dose dose-ranging toxicity study was designed to determine the tolerability of DHA-dFdC when administered to DBA/2 mice by intravenous (i.v.) injection on a repeat-dose schedule (i.e. injections on days 0, 3, 7, 10, and 13). In order to determine the effect of a lethal dose of DHA-dFdC, mice were injected i.v. with three doses of DHA-dFdC at 100 mg/kg on days 0, 3, and 5 (i.e. a lethal-RD). The body weight of mice was recorded two or three times a week. At the end of the study, major organs (i.e. heart, liver, spleen, kidneys, lung, and pancreas) of mice that received the lethal-RD or RD-MTD were weighed, and blood samples were collected for analyses. Finally, DHA-dFdC was i.v. injected into DBA/2 mice with syngeneic L1210 mouse leukemia cells to evaluate its efficacy at or below RD-MTD. RESULTS: The RD-MTD of DHA-dFdC is 50 mg/kg. At 100 mg/kg, a lethal-RD, DHA-dFdC decreases the weights of mouse spleen and liver and significantly affected certain blood parameters (i.e. white blood cells, lymphocytes, eosinophils, and neutrophil segmented). At or below its RD-MTD, DHA-dFdC significantly prolonged the survival of L1210 leukemia-bearing mice. CONCLUSION: DHA-dFdC has dose-dependent toxicity, affecting mainly spleen at a lethal-RD. At or below its RD-MTD, DHA-dFdC is effective against leukemia in a mouse model.


Asunto(s)
Antineoplásicos/toxicidad , Desoxicitidina/análogos & derivados , Desoxicitidina/toxicidad , Leucemia L1210/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Desoxicitidina/farmacología , Composición de Medicamentos , Femenino , Humanos , Dosis Máxima Tolerada , Ratones Endogámicos DBA , Gemcitabina
6.
Mol Pharm ; 13(6): 1833-42, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27074028

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer. TNBC is often infiltrated with a large number of macrophages, which in turn promote tumor growth and metastasis. In this study, tumor-associated macrophages (TAMs) were exploited as a target to deliver doxorubicin (DOX), a chemotherapeutic agent, to TNBC using nanoparticles surface-functionalized by (i) acid-sensitive sheddable PEGylation and (ii) modifying with mannose (i.e., DOX-AS-M-PLGA-NPs). In mice with orthotopic M-Wnt triple-negative mammary tumors, a single intravenous injection of DOX-AS-M-PLGA-NPs significantly reduced macrophage population in tumors within 2 days, and the density of the macrophages recovered slowly. Repeated injections of DOX-AS-M-PLGA-NPs can help maintain the population of the macrophages at a lower level. In M-Wnt tumor-bearing mice that were pretreated with zoledronic acid to nonselectively deplete macrophages, the TAM-targeting DOX-AS-M-PLGA-NPs were not more effective than the DOX-AS-PLGA-NPs that were not surface-modified with mannose and thus do not target TAMs in controlling tumor growth. However, in M-Wnt tumor-bearing mice that were not pretreated with zoledronic acid, the TAM-targeting DOX-AS-M-PLGA-NPs were significantly more effective than the nontargeting DOX-AS-PLGA-NPs in controlling the tumor growth. The AS-M-PLGA-NPs or other nanoparticles surface-functionalized similarly, when loaded with a chemotherapeutic agent commonly used in adjuvant therapy of TNBC, may be developed into targeted therapy for TNBC.


Asunto(s)
Antineoplásicos/farmacología , Macrófagos/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Polietilenglicoles/química
7.
Mol Pharm ; 11(12): 4425-36, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25314115

RESUMEN

Tumor-associated macrophages (TAMs) are increasingly considered a viable target for tumor imaging and therapy. Previously, we reported that innovative surface-functionalization of nanoparticles may help target them to TAMs. In this report, using poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporated with doxorubicin (DOX) (DOX-NPs), we studied the effect of surface-modification of the nanoparticles with mannose and/or acid-sensitive sheddable polyethylene glycol (PEG) on the biodistribution of DOX and the uptake of DOX by TAMs in tumor-bearing mice. We demonstrated that surface-modification of the DOX-NPs with both mannose and acid-sensitive sheddable PEG significantly increased the accumulation of DOX in tumors, enhanced the uptake of the DOX by TAMs, but decreased the distribution of DOX in mononuclear phagocyte system (MPS), such as liver. We also confirmed that the acid-sensitive sheddable PEGylated, mannose-modified DOX-nanoparticles (DOX-AS-M-NPs) targeted TAMs because depletion of TAMs in tumor-bearing mice significantly decreased the accumulation of DOX in tumor tissues. Furthermore, in a B16-F10 tumor-bearing mouse model, we showed that the DOX-AS-M-NPs were significantly more effective than free DOX in controlling tumor growth but had only minimum effect on the macrophage population in mouse liver and spleen. The AS-M-NPs are promising in targeting cytotoxic or macrophage-modulating agents into tumors to improve tumor therapy.


Asunto(s)
Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Macrófagos/metabolismo , Nanopartículas/química , Animales , Línea Celular Tumoral , Ratones
8.
J Pharm Sci ; 113(3): 555-578, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37931786

RESUMEN

Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.


Asunto(s)
Anticuerpos , Proteínas , Humanos , Prevalencia , Proteínas/química , Polietilenglicoles/química , Polímeros , Liposomas/química , Inmunoglobulina M
9.
Int J Pharm ; 650: 123693, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38081555

RESUMEN

Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.


Asunto(s)
Fibrosis Quística , Humanos , Ratones , Animales , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Dioxanos , Tamaño de la Partícula
10.
Eur J Pharm Biopharm ; 183: 1-12, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549400

RESUMEN

Over the last decade, the potential for silver nanoparticles (AgNP) to be used as an anti-melanoma agent has been supported by both in vitro and in vivo evidence. However, an undesirably high concentration of AgNP is often required to achieve an antitumor effect. Therefore a combination treatment that can maintain or improve antitumor efficacy (with lower amounts of AgNP) while also reducing off-target effects is sought. In this study, the combination of AgNP and resiquimod (RSQ: a Toll-like receptor agonist) was investigated and shown to significantly prolong the survival of melanoma-challenged mice when added sequentially. Results from toxicity studies showed that the treatment was non-toxic in mice. Immune cell depletion studies suggested the possible involvement of CD8+ T cells in the antitumor response observed in the AgNP + RSQ (sequential) treatment. NanoString was also employed to further understand the mechanism underlying the increase in the treatment efficacy of AgNP + RSQ (sequential); showing significant changes, compared to the naive group, in gene expression in pathways involved in apoptosis and immune stimulation. In conclusion, the combination of AgNP and RSQ is a new combination worthy of further investigation in the context of melanoma treatment.


Asunto(s)
Melanoma , Nanopartículas del Metal , Ratones , Animales , Plata , Linfocitos T CD8-positivos , Melanoma/tratamiento farmacológico
11.
AAPS J ; 25(4): 57, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266761

RESUMEN

Melanoma is the deadliest form of skin cancer and surgery is currently the most effective treatment. However, there are situations where surgery fails or is not an option to treat melanoma patients. Immunotherapy such as immune checkpoint blockade (e.g., anti-PD-1) can be effective as an alternative treatment for melanoma patients; however, the percentage of melanoma patients that exhibit complete responses from anti-PD-1 monotherapy is low, and a hostile immunosuppressive tumor microenvironment may be at least partly responsible. Resiquimod (RSQ) is an imidazoquinolinamine derivative and TLR-7/8 agonist that could enhance the antitumor activity of immune checkpoint blockade when these agents are combined as a treatment for melanoma. Here, the effect of combining systemic anti-PD-1 and locally administered RSQ on the survival of melanoma-challenged mice was tested. Our results demonstrated that anti-PD-1 in combination with RSQ can significantly prolong the survival of melanoma-challenged mice, compared to untreated mice and mice treated with anti-PD-1 alone. In addition, the in vitro studies showed that RSQ can mediate a direct anti-proliferative effect on melanoma cells. In conclusion, the combination of RSQ and anti-PD-1 may be a promising treatment for melanoma patients, especially as both treatments have already been used independently to safely treat melanoma patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
12.
Biomaterials ; 296: 122093, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965280

RESUMEN

Dysfunction of the p53 gene and the presence of the MDR1 gene are associated with many malignant tumors including endometrial cancer and are responsible for cancer therapeutic resistance and poor survival. Thus, there is a critical need to devise novel combinatorial therapies with multiple mechanisms of action to overcome drug resistance. Here, we report a new ciprofloxacin derivative (CIP2b) tested either alone or in combination with taxanes against four human endometrial cancer cell lines. In vitro studies revealed that a combination of paclitaxel + CIP2b had synergistic cytotoxic effects against MDR1-expressing type-II human endometrial cancer cells with loss-of-function p53 (Hec50co LOFp53). Enhanced antitumor effects were confirmed by substantial increases in caspase-3 expression, cell population shifts toward the G2/M phase, and reduction of cdc2 phosphorylation. It was found that CIP2b targets multiple pathways including the inhibition of MDR1, topoisomerase I, and topoisomerase II, as well as enhancing the effects of paclitaxel (PTX) on microtubule assembly. In vivo treatment with the combination of PTX + CIP2b also led to significantly increased accumulation of PTX in tumors (compared to CIP2b alone) and reduction in tumor growth. Enhanced in vivo cytotoxic effects were confirmed by histological and immunohistochemical examination of the tumor tissues. Complete blood count and blood biochemistry data confirmed the absence of any apparent off-target toxicity. Thus, combination therapy involving PTX and CIP2b targeted multiple pathways and represents an approach that could result in improved tolerance and efficacy in patients with type-II endometrial cancer harboring the MDR1 gene and p53 mutations.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Femenino , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Resistencia a Antineoplásicos/genética
13.
J Pharm Sci ; 111(5): 1379-1390, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34563533

RESUMEN

A mitochondrial electron transport chain member complex I inhibitor, amobarbital, can reduce oxidative damage and chondrocyte death, eventually preventing post-traumatic osteoarthritis (PTOA). Viscosupplementation using a crosslinked hyaluronic acid (HA) hydrogel is currently applied clinically for knee OA pain relief. In this work, we utilized the HA hydrogel as a drug delivery vehicle to improve the long-term efficacy of amobarbital. Here we evaluated the pharmaceutic stability of amobarbital when dispersed in a crosslinked HA hydrogel formulated in proportions intended for clinical use. We validated a high-performance liquid chromatography with an ultraviolet detector (HPLC-UV) method following International Conference for Harmonization Q2(R1) guidelines to ensure its suitability for amobarbital detection. The feasibility of this formulation's drug delivery capability was proven by measuring the release, solubility, and drug uniformity. The amobarbital/HA hydrogel showed comparable amobarbital stability in different biological fluids compared to amobarbital solution. In addition, the amobarbital/HA hydrogel imparted significantly greater drug stability when stored at 70°C for 24 hours. In conclusion, we confirmed the pharmaceutical stability of the amobarbital/HA hydrogel in various conditions and biological fluids using a validated HPLC-UV method. This data provides essential evidence in support of the use of this amobarbital/HA formulation in future clinical trials for PTOA treatment.


Asunto(s)
Ácido Hialurónico , Osteoartritis , Amobarbital/uso terapéutico , Cromatografía Líquida de Alta Presión , Humanos , Ácido Hialurónico/química , Hidrogeles/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteoartritis/prevención & control , Dolor/tratamiento farmacológico
14.
Drug Deliv Transl Res ; 12(7): 1684-1696, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34635984

RESUMEN

Endometrial cancer is the most common gynecological cancer that affects the female reproductive organs. The standard therapy for EC for the past two decades has been chemotherapy and/or radiotherapy. PD98059 is a reversible MEK inhibitor that was found in these studies to increase the cytotoxicity of paclitaxel (PTX) against human endometrial cancer cells (Hec50co) in a synergistic and dose-dependent manner. Additionally, while PD98059 arrested Hec50co cells at the G0/G1 phase, and PTX increased accumulation of cells at the G2/M phase, the combination treatment increased accumulation at both the G0/G1 and G2/M phases at low PTX concentrations. We recently developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) modified with polyethylene glycol (PEG) and coated with polyamidoamine (PAMAM) (referred to here as PGM NPs) which have favorable biodistribution profiles in mice, compared to PD98059 solution. Here, in order to enhance tissue distribution of PD98059, PD98059-loaded PGM NPs were prepared and characterized. The average size, zeta potential, and % encapsulation efficiency (%EE) of these NPs was approximately 184 nm, + 18 mV, and 23%, respectively. The PD98059-loaded PGM NPs released ~ 25% of the total load within 3 days in vitro. In vivo murine studies revealed that the pharmacokinetics and biodistribution profile of intravenous (IV) injected PD98059 was improved when delivered as PD98059-loaded PGM NPs as opposed to soluble PD98059. Further investigation of the in vivo efficacy and safety of this formulation is expected to emphasize the potential of its clinical application in combination with commercial PTX formulations against different cancers.


Asunto(s)
Neoplasias Endometriales , Nanopartículas , Animales , Línea Celular Tumoral , Portadores de Fármacos , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Flavonoides , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Paclitaxel , Poliaminas , Polietilenglicoles , Inhibidores de Proteínas Quinasas , Distribución Tisular
15.
J Pharm Sci ; 110(3): 1227-1239, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33069710

RESUMEN

Baclofen immediate release mode of administration exhibit sharp plasma peaking that results in the emergence of side effects like hypotension. This research employs preformulation studies to design an optimum dosage form for baclofen to enhance therapeutic outcomes. These studies include partition coefficient and ex-vivo permeation studies. Partition coefficient was found to be 1.27 at pH 7.4. Permeation studies confirmed the presence of specialized transport mechanism through the GIT. It was concluded that an ideal formulation of baclofen should provide slow-release of the drug to avoid sharp peaking. Modified-release floating extrudates of baclofen were prepared using Carbopol 934 and HPMC with different gas-forming agents. Different release-retarding materials (Eudragit L100, Eudragit RS100 and Cetyl alcohol) were used as ingredients in the binder solutions. The prepared extrudates were assessed for their drug content, floating ability, friability properties and in vitro release properties. The prepared extrudates recorded buoyance characteristics for 24 h with a floating lag time varying from 0 to 73.34 s. The optimized extrudates manifested extended baclofen release for up to 8 h compared to 0.2 h for marketed baclofen tablets. This approach was found efficient to provide greater bioavailability and minimize hypotension associated with commercial baclofen tablets.


Asunto(s)
Baclofeno , Excipientes , Disponibilidad Biológica , Preparaciones de Acción Retardada , Comprimidos
16.
Artículo en Inglés | MEDLINE | ID: mdl-34307073

RESUMEN

Elevated expression of C-type like receptors (CLRs) by tumor cells and tumor-associated macrophages (TAMs) present a unique target for the delivery of anticancer agents. Stearoyl gemcitabine (GemC18)-incorporated, acid-sensitive micelles (G-AS-M) prepared with a stearoyl polyethylene glycol (PEG2000) hydrazone were surface-mannosylated in this study for potential targeted killing of tumor cells and TAMs. The surface mannosylated micelles (i.e. G-MAS-M) were significantly more cytotoxic than the G-AS-M micelles to macrophages and tumor cells that express CLRs. Surprisingly, the uptake of GemC18 in the mannosylated G-MAS-M micelles by the macrophages and tumor cells was lower than that of GemC18 in the G-AS-M micelles. The lack of correlation between the cytoxicity and cellular uptake of GemC18 in the micelles was likely caused by a reduction in the sensitivity of the hydrazone bond linking the PEG2000 to the mannosylated G-MAS-M micelles to hydrolysis, resulting in more stable micelles.

17.
Int J Pharm ; 606: 120876, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34252520

RESUMEN

Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.


Asunto(s)
Melanoma , Nanopartículas , Animales , Línea Celular Tumoral , Flavonoides , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Paclitaxel , Tamaño de la Partícula , Proteínas Proto-Oncogénicas B-raf/genética
18.
Drug Deliv Transl Res ; 11(1): 182-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32378175

RESUMEN

PD98059 is a reversible MEK inhibitor that we are investigating as a potential treatment for neurochemical changes in the brain that drive neurohumoral excitation in heart failure. In a rat model that closely resembles human heart failure, we found that central administration of PD98059 inhibits phosphorylation of ERK1/2 in the paraventricular nucleus of the hypothalamus, ultimately reducing sympathetic excitation which is a major contributor to clinical deterioration. Studies revealed that the pharmacokinetics and biodistribution of PD98059 match a two-compartment model, with drug found in brain as well as other body tissues, but with a short elimination half-life in plasma (approximately 73 min) that would severely limit its potential clinical usefulness in heart failure. To increase its availability to tissues, we prepared a sustained release PD98059-loaded PLGA microparticle formulation, using an emulsion solvent evaporation technique. The average particle size, yield percent, and encapsulation percent were found to be 16.73 µm, 76.6%, and 43%, respectively. In vitro drug release occurred over 4 weeks, with no noticeable burst release. Following subcutaneous injection of the microparticles in rats, steady plasma levels of PD98059 were detected by HPLC for up to 2 weeks. Furthermore, plasma and brain levels of PD98059 in rats with heart failure were detectable by LC/MS, despite expected erratic absorption. These findings suggest that PD98059-loaded microparticles hold promise as a novel therapeutic intervention countering sympathetic excitation in heart failure, and perhaps in other disease processes, including cancers, in which activated MAPK signaling is a significant contributing factor. Graphical abstract.


Asunto(s)
Flavonoides , Quinasas de Proteína Quinasa Activadas por Mitógenos , Animales , Preparaciones de Acción Retardada , Microesferas , Tamaño de la Partícula , Ratas , Distribución Tisular
19.
Adv Ther (Weinh) ; 4(7)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34423112

RESUMEN

Different tetrahydrobenzo[b]thiophene derivatives were explored as new tubulin polymerization destabilizers to arrest tumor cell mitosis. A series of compounds incorporating the tetrahydrobenzo[b]thiophene scaffold were synthesized, and their biological activities were investigated. The cytotoxicity of each of the synthesized compounds was assessed against a range of cell lines. Specifically, the benzyl urea tetrahydrobenzo[b]thiophene derivative, 1-benzyl-3-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)urea (BU17), was identified as the most potent compound with broad-spectrum antitumor activity against several cancer cell lines. The potential mechanism(s) of action were investigated where dose-dependent G2/M accumulation and A549 cell cycle arrest were detected. Additionally, A549 cells treated with BU17 expressed enhanced levels of caspase 3 and 9, indicating the induction of apoptosis. Furthermore, it was found that BU17 inhibits WEE1 kinase and targets tubulin by blocking its polymerization. BU17 was also formulated into PLGA nanoparticles, and it was demonstrated that BU17-loaded nanoparticles could significantly enhance antitumor activity compared to the soluble counterpart.

20.
Biomaterials ; 275: 120842, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087583

RESUMEN

Defective cellular metabolism, impaired mitochondrial function, and increased cell death are major problems that adversely affect donor tissues during hypothermic preservation prior to transplantation. These problems are thought to arise from accumulated reactive oxygen species (ROS) inside cells. Oxidative stress acting on the cells of organs and tissues preserved in hypothermic conditions before surgery, as is the case for cornea transplantation, is thought to be a major reason behind cell death prior to surgery and decreased graft survival after transplantation. We have recently discovered that ubiquinol - the reduced and active form of coenzyme Q10 and a powerful antioxidant - significantly enhances mitochondrial function and reduces apoptosis in human donor corneal endothelial cells. However, ubiquinol is highly lipophilic, underscoring the need for an aqueous-based formulation of this molecule. Herein, we report a highly dispersible and stable formulation comprising a complex of ubiquinol and gamma cyclodextrin (γ-CD) for use in aqueous-phase ophthalmic products. Docking studies showed that γ-CD has the strongest binding affinity with ubiquinol compared to α- or ß-CD. Complexed ubiquinol showed significantly higher stability compared to free ubiquinol in different aqueous ophthalmic products including Optisol-GS® corneal storage medium, balanced salt solution for intraocular irrigation, and topical Refresh® artificial tear eye drops. Greater ROS scavenging activity was noted in a cell model with high basal metabolism and ROS generation (A549) and in HCEC-B4G12 human corneal endothelial cells after treatment with ubiquinol/γ-CD compared to free ubiquinol. Furthermore, complexed ubiquinol was more effective at lowering ROS, and at far lower concentrations, compared to free ubiquinol. Complexed ubiquinol inhibited lipid peroxidation and protected HCEC-B4G12 cells against erastin-induced ferroptosis. No evidence of cellular toxicity was detected in HCEC-B4G12 cells after treatment with complexed ubiquinol. Using a vertical diffusion system, a topically applied inclusion complex of γ-CD and a lipophilic dye (coumarin-6) demonstrated transcorneal penetrance in porcine corneas and the capacity for the γ-CD vehicle to deliver drug to the corneal endothelium. Using the same model, topically applied ubiquinol/γ-CD complex penetrated the entire thickness of human donor corneas with markedly greater ubiquinol retention in the endothelium compared to free ubiquinol. Lastly, the penetrance of ubiquinol/γ-CD complex was assayed using human donor corneas preserved for 7 days in Optisol-GS® per standard industry practices, and demonstrated higher amounts of ubiquinol retained in the corneal endothelium compared to free ubiquinol. In summary, ubiquinol complexed with γ-CD is a highly stable composition that can be incorporated into a variety of aqueous-phase products for ophthalmic use including donor corneal storage media and topical eye drops to scavenge ROS and protect corneal endothelial cells against oxidative damage.


Asunto(s)
Trasplante de Córnea , Células Endoteliales , Animales , Córnea , Medio de Cultivo Libre de Suero , Dextranos , Endotelio Corneal , Gentamicinas , Humanos , Preservación de Órganos , Porcinos , Ubiquinona/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA