Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 129(3): 537-46, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17227016

RESUMEN

Sub-10-fs laser pulses are used to impulsively photoexcite bacteriorhodopsin (BR) suspensions and probe the evolution of the resulting vibrational wave packets. Fourier analysis of the spectral modulations induced by transform-limited as well as linearly chirped excitation pulses allows the delineation of excited- and ground-state contributions to the data. On the basis of amplitude and phase variations of the modulations as a function of the dispersed probe wavelength, periodic modulations in absorption above 540 nm are assigned to ground-state vibrational coherences induced by resonance impulsive Raman spectral activity (RISRS). Probing at wavelengths below 540 nm-the red edge of the intense excited-state absorption band-uncovers new vibrational features which are accordingly assigned to wave packet motions along bound coordinates on the short-lived reactive electronic surface. They consist of high- and low-frequency shoulders adjacent to the strong C=C stretching and methyl rock modes, respectively, which have ground-state frequencies of 1008 and 1530 cm-1. Brief activity centered at approximately 900 cm-1, which is characteristic of ground-state HOOP modes, and strong modulations in the torsional frequency range appear as well. Possible assignments of the bands and their implication to photoinduced reaction dynamics in BR are discussed. Reasons for the absence of similar signatures in the pump-probe spectral modulations at longer probing wavelengths are considered as well.


Asunto(s)
Bacteriorodopsinas/química , Fotoquímica , Rhodobacter sphaeroides/fisiología , Absorción , Bacteriorodopsinas/fisiología , Modelos Teóricos , Espectrometría Raman/métodos , Factores de Tiempo
2.
J Phys Chem A ; 109(37): 8246-53, 2005 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16834211

RESUMEN

Closed loop automated pulse shaping experiments are conducted to investigate population transfer in solutions of the laser dye LDS750 in acetonitrile and ethanol. Guided by a genetic algorithm, the optical phases of broadband noncollinear parametric amplifier pulses are modulated by a micromachined deformable mirror to minimize sample fluorescence. The objectives were to test if nonlinearly chirped pulses could reduce population transfer below levels attained by their linearly chirped analogues, and if so, whether the resulting pulse shapes could be rationalized in terms of the photoinduced molecular dynamics. We further aimed to discover how the optimal solutions depend on the pulse fluence, and on the nature of the solvent. Using frequency resolved optical gating, the optimal field is shown to consist of a transform limited blue portion, which promotes population to the excited state, and a negatively chirped red tail, which follows the Stokes shifting of the excited density and dumps it back down to the ground state through stimulated emission. This is verified by comparing the optimal group delay dispersion with multichannel transient absorption data collected in acetonitrile. The optimal pulse shape was not significantly affected by variation of pulse fluence or by the change of solvent for the two polar liquids investigated. These results are discussed in terms of accumulated insights concerning the photophysics of LDS750 and the capabilities of our learning feedback scheme for quantum control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA