Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 168(3): 828-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25944824

RESUMEN

Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism.


Asunto(s)
Brassica napus/embriología , Brassica napus/metabolismo , Análisis Multinivel , Aceites de Plantas/metabolismo , Semillas/embriología , Semillas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Aminoácidos/metabolismo , Biocatálisis , Biomasa , Brassica napus/ultraestructura , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Cromatografía Liquida , Glucólisis , Metabolismo de los Lípidos , Espectrometría de Masas , Análisis de Flujos Metabólicos , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Semillas/ultraestructura , Almidón/metabolismo , Factores de Tiempo
2.
Mycorrhiza ; 24(5): 369-82, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24338046

RESUMEN

Many forest tree species are dependent on their symbiotic interaction with ectomycorrhizal (ECM) fungi for phosphorus (P) uptake from forest soils where P availability is often limited. The ECM fungal association benefits the host plant under P limitation through enhanced soil exploration and increased P acquisition by mycorrhizas. To study the P starvation response (PSR) and its modification by ECM fungi in Populus tremuloides, a comparison was made between nonmycorrhizal (NM) and mycorrhizal with Laccaria bicolor (Myc) seedlings grown under different concentrations of phosphate (Pi) in sand culture. Although differences in growth between NM and Myc plants were small, Myc plants were more effective at acquiring P from low Pi treatments, with significantly lower k m values for root and leaf P accumulation. Pi limitation significantly increased the activity of catalase, ascorbate peroxidase, and guaiacol-dependent peroxidase in leaves and roots to greater extents in NM than Myc P. tremuloides. Phosphoenolpyruvate carboxylase activity also increased in NM plants under P limitation, but was unchanged in Myc plants. Formate, citrate, malonate, lactate, malate, and oxalate and total organic carbon exudation by roots was stimulated by P limitation to a greater extent in NM than Myc plants. Colonization by L. bicolor reduced the solution Pi concentration thresholds where PSR physiological changes occurred, indicating that enhanced Pi acquisition by P. tremuloides colonized by L. bicolor altered host P homeostasis and plant stress responses to P limitation. Understanding these plant-symbiont interactions facilitates the selection of more P-efficient forest trees and strategies for tree plantation production on marginal soils.


Asunto(s)
Antioxidantes/metabolismo , Ciclo del Carbono/fisiología , Laccaria/fisiología , Fosfatos/metabolismo , Fósforo/metabolismo , Populus/microbiología , Populus/fisiología , Simbiosis , Biomasa
3.
Tree Physiol ; 29(3): 423-36, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19203961

RESUMEN

Species and hybrids in the genus Populus have become the focus of investigation for use in biofuels production and their capacity to sequester carbon (C) in the environment. The identification of species resistant to marginal edaphic sites may be important in both of these endeavors. Plant growth, total dissolved organic carbon (TOC) and low molecular weight organic acid (OA) production, antioxidative enzyme activities and mineral content were assessed in Populus tremuloides L. and Populus trichocarpa Torr. & Gray seedlings under exposure to aluminum (Al). Both species were sensitive to Al, with significant reductions in shoot and root biomass at and above 50 microM Al. Exposure to Al induced 40-fold increases in TOC deposition in P. tremuloides and 100-fold increases in P. trichocarpa. In P. tremuloides, Al treatment induced root exudation of malic and citric acids, while Al increased exudation of citrate and oxalate in P. trichocarpa. Organic acids accounted for 20-64% of total C released upon Al exposure, with the proportion of OAs increasing in P. tremuloides and decreasing in P. trichocarpa. Dose-dependent responses of catalase and ascorbate peroxidase were observed in both root and leaf tissues, indicating that Al exposure induced oxidative stress in poplar. Treatment at and above 100 microM Al reduced the concentrations of calcium (Ca) and magnesium (Mg) in roots and leaves, whereas Al at or above 50 microM reduced root and leaf phosphorous (P) concentrations. The majority of Al taken up was retained in the root system. Even with the induction of OA exudation and accumulation, P. tremuloides and P. trichocarpa remained sensitive to Al, as evidenced by elevated antioxidative enzyme activities, which may reflect inhibition of Ca or P uptake and destabilization of cell homeostasis in these poplar species. Although plants exhibited reductions in growth and evidence of oxidative and nutritional stress, total C rhizodeposition rates for both species increased with increasing Al exposure concentration. Estimated C deposition rates of 16 mg C plant(-1) day(-1) were four-times larger than previously reported values for forest tree species, indicating that edaphic stress plays an important role in C flux to the rhizosphere.


Asunto(s)
Aluminio/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Aluminio/toxicidad , Ácidos Carboxílicos/metabolismo , Minerales/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Populus/efectos de los fármacos , Populus/crecimiento & desarrollo , Plantones/metabolismo , Especificidad de la Especie
4.
Tree Physiol ; 38(1): 52-65, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036599

RESUMEN

The fate of carbon (C) captured by forest trees during photosynthesis is influenced by the supply of other resources. Fixed C may be partitioned among biomolecules within the leaf and/or allocated throughout the tree to growth, storage and maintenance activities. Phosphorus (P) availability often limits tree productivity due to its high biological demand and strong interactions with soil minerals. As ectomycorrhizal (ECM) fungi play critical roles in enhancing phosphate (Pi) acquisition by their hosts, these symbioses will influence the fate of C within trees and forested ecosystems. Using Populus tremuloides Michx. (trembling aspen) in symbiosis with Laccaria bicolor (Marie) P.D. Orton or Paxillus involutus (Batsch) Fr., we assessed C acquisition, allocation and partitioning under Pi limitation, specifically focusing on primary and secondary C compounds. Both ECM fungi moderated the effects of low P on photosynthesis and C partitioning among carbohydrates and secondary metabolites by sustaining Pi uptake and translocation in P. tremuloides under Pi limitation. As leaf P declined, reductions in photosynthesis were accompanied by significant shifts in C partitioning from nonstructural carbohydrates (NSCs) to phenolic glycosides and tannins. Carbon partitioning in roots exhibited more complex patterns, with distinct increases in NSCs in nonmycorrhizal (NM) plants under Pi limitation that were not evident in plants colonized by either ECM symbiont. In general, aspen colonized by L. bicolor exhibited C partitioning patterns intermediate between those of NM and P. involutus aspen. The C cost of symbiosis was pronounced for plants supporting P. involutus, where ECM plants exhibited maintenance of photosynthesis yet reduced biomass in comparison with NM and L. bicolor aspen under Pi replete conditions. Our results indicate that the ECM symbiosis affects the disposition of C in forest trees in part by altering the acquisition of other limiting resources from soils, but also through ECM species-specific influences on host physiology. This modulation of C partitioning will have broad implications for forest ecosystem C capture, storage and cycling where nutrient resources may be limited.


Asunto(s)
Carbono/metabolismo , Micorrizas/fisiología , Fósforo/metabolismo , Populus/metabolismo , Populus/microbiología , Biomasa , Laccaria/fisiología , Fotosíntesis/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Suelo
5.
AoB Plants ; 72015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25957315

RESUMEN

Knowledge of the natural genetic variation and structure in a species is important for developing appropriate conservation strategies. As genetic diversity analysis among and within populations of Plumbago zeylanica remains unknown, we aimed (i) to examine the patterns and levels of morphological and genetic variability within/among populations and ascertain whether these variations are dependent on geographical conditions; and (ii) to evaluate genetic differentiation and population structure within the species. A total of 130 individuals from 13 populations of P. zeylanica were collected, covering the entire distribution area of species across India. The genetic structure and variation within and among populations were evaluated using inter-simple sequence repeat (ISSR) and randomly amplified DNA polymorphism (RAPD) markers. High levels of genetic diversity and significantly high genetic differentiation were revealed by both the markers among all studied populations. High values of among-population genetic diversity were found, which accounted for 60 % of the total genetic variance. The estimators of genetic diversity were higher in northern and eastern populations than in southern and western populations indicating the possible loss of genetic diversity during the spread of this species to Southern India. Bayesian analysis, unweighted pair group method with arithmetic average cluster analysis and principal coordinates analysis all showed similar results. A significant isolation-by-distance pattern was revealed in P. zeylanica by ISSR (r = 0.413, P = 0.05) and RAPD (r = 0.279, P = 0.05) analysis. The results obtained suggest an urgent need for conservation of existing natural populations along with extensive domestication of this species for commercial purpose.

6.
J Plant Physiol ; 179: 40-55, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25840343

RESUMEN

The aldo-keto reductase (AKR) superfamily comprises of a large number of primarily monomeric protein members, which reduce a broad spectrum of substrates ranging from simple sugars to potentially toxic aldehydes. Plant AKRs can be broadly categorized into four important functional groups, which highlight their roles in diverse plant metabolic reactions including reactive aldehyde detoxification, biosynthesis of osmolytes, secondary metabolism and membrane transport. Further, multiple overlapping functional aspects of plant AKRs including biotic and abiotic stress defense, production of commercially important secondary metabolites, iron acquisition from soil, plant-microbe interactions etc. are discussed as subcategories within respective major groups. Owing to the broad substrate specificity and multiple stress tolerance of the well-characterized AKR4C9 from Arabidopsis thaliana, protein sequences of all the homologues of AKR4C9 (A9-like proteins) from forty different plant species (Phytozome database) were analyzed. The analysis revealed that all A9-like proteins possess strictly conserved key catalytic residues (D-47, Y-52 and K-81) and belong to the pfam00248 and cl00470 AKR superfamilies. Based on structural homology of the three flexible loops of AKR4C9 (Loop A, B and C) responsible for broad substrate specificity, A9-like proteins found in Brassica rapa, Phaseolus vulgaris, Cucumis sativus, Populus trichocarpa and Solanum lycopersicum were predicted to have a similar range of substrate specificity. Thus, plant AKRs can be considered as potential breeding targets for developing stress tolerant varieties in the future. The present review provides a consolidated update on the current research status of plant AKRs with an emphasis on important functional aspects as well as their potential future prospects and an insight into the overall structure-function relationships of A9-like proteins.


Asunto(s)
Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Plantas/enzimología , Plantas/metabolismo , Estrés Fisiológico , Aldo-Ceto Reductasas , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA