Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Immunol ; 50(3): 363-379, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755098

RESUMEN

After repeated antigen exposure, both memory and terminally differentiated cells can be generated within CD8+ T cells. Although, during their differentiation, activated CD8+ T cells may first lose CD28, and CD28- cells may eventually express CD57 as a subsequent step, a population of CD28+ CD57+ (DP) CD8+ T cells can be identified in the peripheral blood. How this population is distinct from CD28- CD57- (DN) CD8+ T cells, and from the better characterized non-activated/early-activated CD28+ CD57- and senescent-like CD28- CD57+ CD8+ T cell subsets is currently unknown. Here, RNA expression of the four CD8+ T cell subsets isolated from human PBMCs was analyzed using microarrays. DN cells were more similar to "early" highly differentiated cells, with decreased TNF and IFN-γ production, impaired DNA damage response and apoptosis. Conversely, increased apoptosis and expression of cytokines, co-inhibitory, and chemokine receptors were found in DP cells. Higher levels of DP CD8+ T cells were observed 7 days after Hepatitis B vaccination, and decreased levels of DP cells were found in rheumatoid arthritis patients. More DP and DN CD8+ T cells were present in the bone marrow, in comparison with PBMCs. In summary, our results indicate that DP and DN cells are distinct CD8+ T cell subsets displaying defined properties.


Asunto(s)
Antígenos CD28/inmunología , Antígenos CD57/inmunología , Linfocitos T CD8-positivos/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T CD8-positivos/citología , Humanos , Fenotipo , Subgrupos de Linfocitos T/citología
2.
Immun Ageing ; 17: 15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32514279

RESUMEN

BACKGROUND: Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. METHODS: Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups. RESULTS: Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. CONCLUSION: Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.

3.
Immun Ageing ; 16: 21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462901

RESUMEN

BACKGROUND: Antigen-experienced immune cells migrate back to the bone marrow (BM), where they are maintained in BM survival niches for an extended period. The composition of T cell subpopulations in the BM changes with age, leading to an accumulation of highly differentiated T cells and a loss of naïve T cells. While innate immune cells are also affected by age, little is known about interactions between different adaptive immune cell populations maintained in the BM. In this study, the phenotype and function of innate and adaptive immune cells isolated from human BM and peripheral blood (PB) was analysed in detail using flow cytometry, to determine if the accumulation of highly differentiated T and B cells, supported by the BM niches, limits the maintenance of other immune cells, or affects their functions such as providing protective antibody concentrations. RESULTS: Total T cells increase in the BM with age, as do highly differentiated CD8+ T cells which no longer express the co-stimulatory molecule CD28, while natural killer T (NKT) cells, monocytes, B cells, and naïve CD8+ T cells all decrease in the BM with age. A negative correlation of total T cells with B cells was observed in the BM. The percentage of B cells in the BM negatively correlated with highly differentiated CD8+CD28- T cells, replicative-senescent CD8+CD57+ T cells, as well as the CD8+CD28-CD57+ population. Similar correlations were seen between B cells and the frequency of highly differentiated T cells producing pro-inflammatory molecules in the BM. Interestingly, plasma concentrations of diphtheria-specific antibodies negatively correlated with highly differentiated CD8+CD57+ T cells as well as with exhausted central memory CD8+ and CD4+ T cells in the BM. A negative impact on diphtheria-specific antibodies was also observed for CD8+ T cells expressing senescence associated genes such as the cell cycle regulator p21 (CDKN1A), KLRG-1, and elevated levels of reactive oxygen species (ROS). CONCLUSION: Our data suggest that the accumulation and maintenance of highly differentiated, senescent, and exhausted T cells in the BM, particularly in old age, may interfere with the survival of other cell populations resident in the BM such as monocytes and B cells, leading to reduced peripheral diphtheria antibody concentrations as a result. These findings further highlight the importance of the BM in the long-term maintenance of immunological memory.

4.
Eur J Immunol ; 47(3): 481-492, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995612

RESUMEN

The bone marrow (BM) plays a key role in the long-term maintenance of immunological memory. However, the impact of aging on the production of survival factors for effector/memory T cells and plasma cells in the human BM has not been studied. We now show that the expression of molecules involved in the maintenance of immunological memory in the human BM changes with age. While IL-15, which protects potentially harmful CD8+ CD28- senescent T cells, increases, IL-7 decreases. IL-6, which may synergize with IL-15, is also overexpressed. In contrast, a proliferation-inducing ligand, a plasma cell survival factor, is reduced. IFN-y, TNF, and ROS accumulate in the BM in old age. IL-15 and IL-6 expression are stimulated by IFN-y and correlate with ROS levels in BM mononuclear cells. Both cytokines are reduced by incubation with the ROS scavengers N-acetylcysteine and vitamin C. IL-15 and IL-6 are also overexpressed in the BM of superoxide dismutase 1 knockout mice compared to their WT counterparts. In summary, our results demonstrate the role of inflammation and oxidative stress in age-related changes of immune cell survival factors in the BM, suggesting that antioxidants may be beneficial in counteracting immunosenescence by improving immunological memory in old age.


Asunto(s)
Envejecimiento/inmunología , Células de la Médula Ósea/fisiología , Linfocitos T CD8-positivos/fisiología , Inflamación/inmunología , Superóxido Dismutasa-1/metabolismo , Acetilcisteína/farmacología , Animales , Ácido Ascórbico/farmacología , Células de la Médula Ósea/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Memoria Inmunológica , Inmunosenescencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/genética
5.
BMC Musculoskelet Disord ; 19(1): 327, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30205831

RESUMEN

BACKGROUND: Formation of lamellar bone in non-osseus tissue is a pathological process called heterotopic ossification. It is the aim of this study to analyse the morphology and immunological status of patients with heterotopic ossification compared to individual healthy persons. METHODS: Human bone marrow and blood samples were obtained from 6 systemically healthy individuals and 4 patients during resection of heterotopic ossification from bone at hip arthroplasty. Bone was fragmented and treated with purified collagenase. Immunofluorescence surface staining was performed and analyzed with flow cytometry. Microcomputed tomography scanning was done performed at a resolution of 11 and 35 µm isometric voxel size respectively using a two different cone beam X-computer tomography systems and a microfocus X-ray tube. Subsequently the volume data was morphometrically analysed. RESULTS: The monocytes, stem cells, stroma cells and granulocytes progenitor cells were strongly reduced in the heterotopic ossification patient. Additionally a significant reduction of stromal stem cells cells and CD34 positive stem cells was observed. The frequency of NK-cells, B cells and T cells were not altered in the patients with heterotopic ossification compared to a healthy person. Micromorphometric parameters showed a lower content of mineralized bone tissue compared to normal bone. Mean trabecular thickness showed a high standard deviation, indicating a high variation in trabecular thickness, anisotropy and reducing bone strength. CONCLUSIONS: This work shows altered immunological distribution that is accompanied by a low decrease in bone volume fraction and tissue mineral density in the heterotopic ossification sample compared to normal bone. Compared to healthy subjects, this might reflect an immunological participation in the development of this entity.


Asunto(s)
Huesos/diagnóstico por imagen , Huesos/inmunología , Técnica del Anticuerpo Fluorescente , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/inmunología , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/inmunología , Microtomografía por Rayos X , Adulto , Anciano , Biomarcadores/análisis , Densidad Ósea , Huesos/patología , Huesos/cirugía , Estudios de Casos y Controles , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Músculo Esquelético/cirugía , Osificación Heterotópica/patología , Osificación Heterotópica/cirugía , Fenotipo
6.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503210

RESUMEN

Myeloproliferative neoplasms (MPNs) comprise a heterogenous group of hematologic neoplasms which are divided into Philadelphia positive (Ph+), and Philadelphia negative (Ph-) or classical MPNs. A variety of immunological factors including inflammatory, as well as immunomodulatory processes, closely interact with the disease phenotypes in MPNs. NK cells are important innate immune effectors and substantially contribute to tumor control. Changes to the absolute and proportionate numbers of NK cell, as well as phenotypical and functional alterations are seen in MPNs. In addition to the disease itself, a variety of therapeutic options in MPNs may modify NK cell characteristics. Reports of suppressive effects of MPN treatment strategies on NK cell activity have led to intensive investigations into the respective compounds, to elucidate the possible negative effects of MPN therapy on control of the leukemic clones. We hereby review the available literature on NK cells in Ph+ and Ph- MPNs and summarize today's knowledge on disease-related alterations in this cell compartment with particular focus on known therapy-associated changes. Furthermore, we critically evaluate conflicting data with possible implications for future projects. We also aim to highlight the relevance of full NK cell functionality for disease control in MPNs and the importance of considering specific changes related to therapy in order to avoid suppressive effects on immune surveillance.

7.
Front Cell Dev Biol ; 8: 610903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469537

RESUMEN

Tumor progression depends primarily on vascular supply, which is facilitated by angiogenic activity within the malignant tissue. Non-small cell lung cancer (NSCLC) is a highly vascularized tumor, and inhibition of angiogenesis was projected to be a promising therapeutic approach. Over a decade ago, the first anti-angiogenic agents were approved for advanced stage NSCLC patients, however, they only produced a marginal clinical benefit. Explanations why anti-angiogenic therapies only show modest effects include the highly adaptive tumor microenvironment (TME) as well as the less understood characteristics of the tumor vasculature. Today, advanced methods of in-depth characterization of the NSCLC TME by single cell RNA sequencing (scRNA-Seq) and preclinical observations enable a detailed characterization of individual cancer landscapes, allowing new aspects for a more individualized inhibition of angiogenesis to be identified. Furthermore, the tumor vasculature itself is composed of several cellular subtypes, which closely interact with other cellular components of the TME, and show distinct biological functions such as immune regulation, proliferation, and organization of the extracellular matrix. With these new insights, combinational approaches including chemotherapy, anti- angiogenic and immunotherapy can be developed to yield a more target-oriented anti-tumor treatment in NSCLC. Recently, anti-angiogenic agents were also shown to induce the formation of high endothelial venules (HEVs), which are essential for the formation of tertiary lymphoid structures, and key components in triggering anti-tumor immunity. In this review, we will summarize the current knowledge of tumor-angiogenesis and corresponding anti-angiogenic therapies, as well as new aspects concerning characterization of tumor-associated vessels and the resulting new strategies for anti-angiogenic therapies and vessel inhibition in NSCLC. We will further discuss why anti-angiogenic therapies form an interesting backbone strategy for combinational therapies and how anti-angiogenic approaches could be further developed in a more personalized tumor-oriented fashion with focus on NSCLC.

8.
Crit Rev Oncol Hematol ; 153: 102948, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32645684

RESUMEN

In the highly dynamic field of advanced malignancies, biomarkers from liquid samples are urgently needed to improve treatment tailoring. However, the heterogenic data lack direct comparison of assays, vectors and relevant validations are rarely found. Therefore, we classified the available studies based on three categories: Measured vectors, applied technique and detected biomarker. High blood tumor mutational burden and low baseline levels of soluble programmed cell death 1 ligand 1 (PD-L1) appear to predict treatment responses to immunotherapy. A high PD-1+ CD4+ T-cell count was associated with poor overall survival, PD-1+CD8+ T-cells connect to a favorable outcome. Circulating tumor cells expressing PD-L1 were mainly associated with poor overall survival and treatment failure. CONCLUSION: Measurement of immunological factors as liquid biomarkers is feasible and has shown promising results. The use of coherent nomenclatures, cross-platform assay comparisons and validations through appropriate powered clinical trials are urgently required to push this auspicious field.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/diagnóstico , Antígeno B7-H1 , Biomarcadores de Tumor , Linfocitos T CD8-positivos , Humanos , Receptor de Muerte Celular Programada 1
9.
Biosci Rep ; 39(5)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31018996

RESUMEN

The bone marrow (BM) provides a preferential survival environment for the long-term maintenance of antigen-experienced adaptive immune cells. After the contact with antigens, effector/memory T cells and plasma cell precursors migrate to the BM, in which they can survive within survival niches in an antigen-independent manner. Despite this, the phenotype of adaptive immune cells changes with aging, and BM niches themselves are affected, leading to impaired long-term maintenance of immunological memory in the elderly as a result. Oxidative stress, age-related inflammation (inflammaging), and cellular senescence appear to play a major role in this process. This review will summarize the age-related changes in T and B cell phenotype, and in the BM niches, discussing the possibility that the accumulation of highly differentiated, senescent-like T cells in the BM during aging may cause inflammation in the BM and promote oxidative stress and senescence. In addition, senescent-like T cells may compete for space with other immune cells within the marrow, partially excluding effector/memory T cells and long-lived plasma cells from the niches.


Asunto(s)
Envejecimiento , Médula Ósea/inmunología , Memoria Inmunológica , Inflamación/inmunología , Estrés Oxidativo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Médula Ósea/metabolismo , Senescencia Celular , Humanos , Inmunidad Celular , Inflamación/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
EBioMedicine ; 46: 387-398, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31327694

RESUMEN

BACKGROUND: The bone marrow (BM) is a major reservoir of resting memory T cells and long-lived plasma cells, capable of providing protection against recurrent infections. Whether the age-related accumulation of adipose tissue in the BM affects the functionality and maintenance of memory cells is not well understood. METHODS: For the first time, we compare human femur marrow adipose tissue (fMAT) and subcutaneous white adipose tissue of the thigh (tsWAT) obtained from the same donors. Therefore, we used microarrays for comparative global gene expression analysis, and employed assays to analyse parameters of adipocyte biology, inflammation and oxidative stress. FINDINGS: We show that fMAT adipocytes differ significantly from tsWAT adipocytes regarding specific gene expression profiles including inflammatory responses and adipogenesis/adipocyte phenotype. Concomitant with considerably lower levels of CD36, a membrane-associated protein important for long-chain fatty acid uptake that is used as maturation marker, fMAT adipocytes are smaller and contain less triglycerides. fMAT adipocytes secrete similar levels of adiponectin and leptin as tsWAT adipocytes, and express increased levels of pro-inflammatory molecules concomitant with an elevated generation of reactive oxygen species (ROS) and impaired function of plasma cells in the BM. INTERPRETATION: Our findings suggest that fMAT is a unique type of adipose tissue containing small adipocytes with lower CD36 protein and triglyceride levels than tsWAT but high adipokine secretion. Moreover, fMAT adipocytes secrete high levels of pro-inflammatory cytokines, contributing to inflammation and impairment of plasma cell function in the BM, suggesting that fMAT has more immune regulatory functions than tsWAT.


Asunto(s)
Adipocitos/inmunología , Adipocitos/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Inmunomodulación , Anciano , Biomarcadores , Antígenos CD36/metabolismo , Citocinas/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
Front Immunol ; 8: 715, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674537

RESUMEN

Cytomegalovirus (CMV) has been described as a contributor to immunosenescence, thus exacerbating age-related diseases. In persons with latent CMV infection, the CD8+ T cell compartment is irreversibly changed, leading to the accumulation of highly differentiated virus-specific CD8+ T cells in the peripheral blood. The bone marrow (BM) has been shown to play a major role in the long-term survival of antigen-experienced T cells. Effector CD8+ T cells are preferentially maintained by the cytokine IL-15, the expression of which increases in old age. However, the impact of CMV on the phenotype of effector CD8+ T cells and on the production of T cell survival molecules in the BM is not yet known. We now show, using BM samples obtained from persons who underwent hip replacement surgery because of osteoarthrosis, that senescent CD8+ TEMRA cells with a bright expression of CD45RA and a high responsiveness to IL-15 accumulate in the BM of CMV-infected persons. A negative correlation was found between CMV antibody (Ab) titers in the serum and the expression of CD28 and IL-7Rα in CD8+ [Formula: see text] cells. Increased IL-15 mRNA levels were observed in the BM of CMV+ compared to CMV- persons, being particularly high in old seropositive individuals. In summary, our results indicate that a BM environment rich in IL-15 may play an important role in the maintenance of highly differentiated CD8+ T cells generated after CMV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA