Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Tissue Res ; 389(2): 241-257, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35622142

RESUMEN

Neutrophils display functional heterogeneity upon responding diversely to physiological and pathological stimulations. During type 2 diabetes (T2D), hyperglycemia constitutively activates neutrophils, leading to reduced response to infections and on the other hand, elevated metabolic intermediates such as homocysteine induce bidirectional activation of platelets and neutrophils leading to thrombosis. Hence, in the context of T2D-associated complications, we examined the influence of high glucose, homocysteine, and LPS representing effector molecules of hyperglycemia, thrombosis, and infection, respectively, on human neutrophil activation to identify distinct signaling pathways by quantitative phosphoproteomics approach. High glucose activated C-Jun-N-Terminal Kinase, NTRK1, SYK, and PRKACA kinases associated with Rho GTPase signaling and phagocytosis, whereas LPS induced AKT1, SRPK2, CSNK2A1, and TTN kinases involved in cytokine signaling and inflammatory response. Homocysteine treatment led to activatation of  LRRK2, FGR, MAPK3, and PRKCD kinases which are associated with neutrophil degranulation and cytoskeletal remodeling. Diverse inducers differentially modulated phosphorylation of proteins associated with neutrophil functions such as oxidative burst, degranulation, extracellular traps, and phagocytosis. Further validation of phosphoproteomics data on selected kinases revealed neutrophils pre-cultured under high glucose showed impeded response to LPS to phosphorylate p-ERK1/2Thr202/Tyr204, p-AKTSer473, and C-Jun-N-Terminal KinaseSer63 kinases. Our study provides novel phosphoproteome signatures that may be explored to understand neutrophil biology in T2D-associated complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Glucosa/metabolismo , Homocisteína/metabolismo , Humanos , Hiperglucemia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Activación Neutrófila , Neutrófilos/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal
2.
Microb Pathog ; 173(Pt A): 105833, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36265737

RESUMEN

INTRODUCTION: Bacterial pathogenicity has for long posed severe effects on patient care. Pseudomonas aeruginosa is a common cause of hospital-acquired infections and nosocomial illnesses. It is known to infect the host by colonizing through quorum sensing and the production of exotoxins. METHODS: The current effort is an analysis of proteomic alterations caused by P. aeruginosa PAO1 to study the effects of quorum sensing inhibitor 6-Methylcoumarin on PAO1 infectivity in the Caenorhabditis elegans model. RESULTS: Through tandem mass tag-based quantitative proteomics approaches, 229 proteins were found to be differentially regulated in infection and upon inhibition. Among these, 34 proteins were found to be dysregulated in both infection and quorum-sensing inhibition conditions. Along with the dysregulation of proteins involved in host-pathogen interaction, PAO1 was found to induce ribosome-inactivating stress accompanied by the downregulating mitochondrial proteins. This in turn caused dysregulation of apoptosis. The expression of multiple proteins involved in ribosome biogenesis and structure, oxidative phosphorylation, and mitochondrial enzymes were altered due to infection. This mechanism, adapted by PAO1 to survive in the host, was inhibited by 6-Methylcoumarin by rescuing the downregulation of ribosomal and mitochondrial proteins. CONCLUSIONS: Taken together, the data reflect the molecular alterations due to quorum sensing and the usefulness of inhibitors in controlling pathogenesis.


Asunto(s)
Caenorhabditis elegans , Percepción de Quorum , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Biopelículas , Caenorhabditis elegans/microbiología , Proteínas Mitocondriales , Proteómica , Pseudomonas aeruginosa , Ribosomas/metabolismo , Factores de Virulencia/metabolismo
3.
J Proteome Res ; 20(5): 2687-2703, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844560

RESUMEN

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. We showed previously that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), a serine-threonine kinase, is highly expressed in gastric cancer and leads to progression. In the present study, we identified the molecular networks involved in CAMKK2-mediated progression of gastric adenocarcinoma. Treatment of gastric cancer cell lines with a CAMKK2 inhibitor, STO-609, resulted in decreased cell migration, invasion, and colony-forming ability and a G1/S-phase arrest. In addition, tandem mass tag (TMT)-based quantitative proteomic analysis resulted in the identification of 7609 proteins, of which 219 proteins were found to be overexpressed and 718 downregulated (1.5-fold). Our data identified several key downregulated proteins involved in cell division and cell proliferation, which included DNA replication licensing factors, replication factor C, origin recognition complex, replication protein A and GINS, and mesenchymal markers, upon CAMKK2 inhibition. Immunoblotting and immunofluorescence results showed concordance with our mass spectroscopy data. Taken together, our study supports CAMKK2 as a novel therapeutic target in gastric cancer.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Neoplasias Gástricas , Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Carcinogénesis/genética , Humanos , Proteómica , Neoplasias Gástricas/genética
4.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948822

RESUMEN

PRMT1 plays many important roles in both normal and disease biology, thus understanding it's regulation is crucial. Herein, we report the role of p300-mediated acetylation at K228 in triggering PRMT1 degradation through FBXL17-mediated ubiquitination. Utilizing mass-spectrometry, cellular biochemistry, and genetic code-expansion technologies, we elucidate a crucial mechanism independent of PRMT1 transcript levels. These results underscore the significance of acetylation in governing protein stability and expand our understanding of PRMT1 homeostasis. By detailing the molecular interplay between acetylation and ubiquitination involved in PRMT1 degradation, this work contributes to broader efforts in deciphering post-translational mechanisms that influence protein homeostasis.

5.
Proteomics Clin Appl ; 18(2): e2200054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787895

RESUMEN

AIM: Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN: A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS: The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION: Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.


Asunto(s)
Hipoxia-Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Recién Nacido , Femenino , Embarazo , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/etiología , Estudios de Casos y Controles , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Biomarcadores , Accidente Cerebrovascular/complicaciones
6.
J Proteomics ; : 105319, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299547

RESUMEN

Breast cancer adaptability to the drug environment reduces the chemotherapeutic response and facilitates acquired drug resistance. Cancer-specific therapeutics can be more effective against advanced-stage cancer than standard chemotherapeutics. To extend the paradigm of cancer-specific therapeutics, clinically relevant acquired tamoxifen-resistant MCF-7 proteome was deconstructed to identify possible druggable targets (N = 150). Twenty-eight drug inhibitors were used against identified druggable targets to suppress non-resistant (NC) and resistant cells (RC). First, selected drugs were screened using growth-inhibitory response against NC and RC. Seven drugs were shortlisted for their time-dependent (10-12 days) cytotoxic effect and further narrowed to three effective drugs (e.g., cisplatin, doxorubicin, and hydroxychloroquine). The growth-suppressive effectiveness of selected drugs was validated in the complex spheroid model (progressive and regressive). In the progressive model, doxorubicin (RC: 83.64 %, NC: 54.81 %), followed by cisplatin (RC: 76.66 %, NC: 68.94 %) and hydroxychloroquine (RC: 68.70 %, NC: 61.78 %) showed a significant growth-suppressive effect. However, in fully grown regressive spheroid, after 4th drug treatment, cisplatin significantly suppressed RC (84.79 %) and NC (40.21 %), while doxorubicin and hydroxychloroquine significantly suppressed only RC (76.09 and 76.34 %). Our in-depth investigation effectively integrated the expression data with the cancer-specific therapeutic investigation. Furthermore, our three-step sequential drug-screening approach unbiasedly identified cisplatin, doxorubicin, and hydroxychloroquine as an efficacious drug to target heterogeneous cancer cell populations. SIGNIFICANCE STATEMENT: Hormonal-positive BC grows slowly, and hormonal-inhibitors effectively suppress the oncogenesis. However, development of drug-resistance not only reduces the drug-response but also increases the chance of BC aggressiveness. Further, alternative chemotherapeutics are widely used to control advanced-stage BC. In contrast, we hypothesized that, compared to standard chemotherapeutics, cancer-specific drugs can be more effective against resistant-cancer. Although cancer-specific treatment identification is an uphill battle, our work shows proteome data can be used for drug selection. We identified multiple druggable targets and, using ex-vivo methods narrowed multiple drugs to disease-condition-specific therapeutics. We consider that our investigation successfully interconnected the expression data with the functional disease-specific therapeutic investigation and selected drugs can be used for effective resistant treatment with higher therapeutic response.

7.
Nat Commun ; 15(1): 5808, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987546

RESUMEN

Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on "event-driven" pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition.


Asunto(s)
Lípidos , Proteolisis , Humanos , Proteolisis/efectos de los fármacos , Lípidos/química , Nanopartículas/química , Animales , Citosol/metabolismo , Sistemas de Liberación de Medicamentos , Proteínas Recombinantes/metabolismo , Ratones , Liposomas
8.
bioRxiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39026884

RESUMEN

The ability to study proteins in a cellular context is crucial to our understanding of biology. Here, we report a new technology for "intracellular protein editing", drawing from intein- mediated protein splicing, genetic code expansion, and endogenous protein tagging. This protein editing approach enables us to rapidly and site specifically install residues and chemical handles into a protein of interest. We demonstrate the power of this protein editing platform to edit cellular proteins, inserting epitope peptides, protein-specific sequences, and non-canonical amino acids (ncAAs). Importantly, we employ an endogenous tagging approach to apply our protein editing technology to endogenous proteins with minimal perturbation. We anticipate that the protein editing technology presented here will be applied to a diverse set of problems, enabling novel experiments in live mammalian cells and therefore provide unique biological insights.

9.
Mol Neurobiol ; 60(1): 303-316, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36261695

RESUMEN

Accumulation of Aß42 peptides forming plaque in various regions of the brain is a hallmark of Alzheimer's disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aß42-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications. Medhya Rasayana such as Brahmi is known for its neuroprotective properties via resolving memory-related issues, while the underlying molecular mechanism of the same remains unclear. In the present study, we aimed to understand the neuroprotective effects of the aqueous extract of Bacopa monnieri and Centella asiatica (both commonly known as Brahmi) against the Aß42 expressing model of the Drosophila melanogaster. By applying a quantitative proteomics approach, the study identified > 90% of differentially expressed proteins from Aß42 expressing D. melanogaster were either restored to their original expression pattern or showed no change in expression pattern upon receiving either Brahmi extract treatment. The Brahmi restored proteins were part of neuronal pathways associated with cell cycle re-entry, apoptosis, and mitochondrial dynamics. The neuroprotective effect of Brahmi was also validated by negative geotaxis behavioral analysis suggesting its protective role against behavioral deficits exerted by Aß42 toxicity. We believe that these discoveries will provide a platform for developing novel therapeutics for AD management by deciphering molecular targets of neuroprotection conferred by an aqueous extract of Bacopa monnieri or Centella asiatica.


Asunto(s)
Enfermedad de Alzheimer , Bacopa , Fármacos Neuroprotectores , Animales , Drosophila melanogaster , Neuroprotección , Proteómica , Bacopa/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Péptidos beta-Amiloides/toxicidad
10.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014285

RESUMEN

Starvation and low carbohydrate diets lead to the accumulation of the ketone body, ß-hydroxybutyrate (BHB), whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a carbon source, BHB accumulation triggers lysine ß-hydroxybutyrylation (Kbhb) of proteins via unknown mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases (HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with ß-hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino acids for classical deacetylation and non-canonical HDAC-catalyzed ß-hydroxybutyrylation. Also consistent with reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive proteome modifications.

11.
Chemosphere ; 336: 139215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336444

RESUMEN

Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d post-treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim based herbicide exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-based herbicide treated mice, the expression of Erß and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-based herbicide treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.


Asunto(s)
Herbicidas , Embarazo , Animales , Femenino , Ratones , Masculino , Herbicidas/toxicidad , Herbicidas/metabolismo , Proteómica , Semen , Testículo/metabolismo , Espermatozoides/metabolismo , Desarrollo Embrionario
12.
J Hazard Mater ; 432: 128654, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286933

RESUMEN

Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.


Asunto(s)
Agua Potable , Fluoruro de Sodio , Animales , Fluoruros/toxicidad , Hipertrofia/inducido químicamente , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fluoruro de Sodio/metabolismo , Fluoruro de Sodio/toxicidad , Serina-Treonina Quinasas TOR/metabolismo
13.
OMICS ; 26(3): 151-164, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35073185

RESUMEN

Rice is one of the most important crops worldwide. Crop production is constrained markedly, however, by abiotic stresses such as salinity. To elucidate early stress response signaling networks involved in rice, we report in this study an original quantitative proteomic analysis of the rice seedlings subjected to short-term salt stress. We detected 570 differentially regulated proteins (DRPs) in the root sample. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DRPs of the root were mainly involved in membrane trafficking, kinase activity, and ion toxicity responses. Interactome analysis revealed the central role of root proteins involved in membrane trafficking in the early response to salinity, such as cell surface receptor-like kinases (RLKs), phosphatidylinositols (PIs), calcium-dependent protein kinases 1 and 5, calcineurin B-like protein-interacting proteins, protein phosphatase 2C (PP2C) inhibitors, and abscisic acid receptors (PYL5/10), indicating activation of S-type anion channel. Furthermore, the proteogenomic analysis revealed 128 unique genome search-specific peptides with high-quality mass spectromety (MS/MS) spectra. We identified 38 novel protein-coding genes, refined the annotation of 17 existing gene models, and suggested several novel stress-responsive proteins, such as RLK5, peroxidase 27, and growth-regulating factor 2. Novel peptides had an ortholog match in the curated protein sequence set of other plant species. In conclusion, this study identifies novel stress-responsive proteins and genes of rice, thus warrant future consideration as candidates for molecular breeding of stress-tolerant crop varieties.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Percepción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Estrés Salino/genética , Tolerancia a la Sal/genética , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética , Espectrometría de Masas en Tándem
14.
Front Genet ; 13: 854764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646067

RESUMEN

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.

15.
Biomed Pharmacother ; 141: 111715, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34198046

RESUMEN

The Pro-inflammatory cytokine, Interleukin 17A (IL-17A) plays a vital role in the pathogenesis of inflammatory-induced acute lung injury (ALI). But, the mechanisms of this pro-inflammatory cytokine in response to activation after replication stress are not yet known. Control on DNA replication (DR) is vital for maintaining genome stability. Minichromosome maintenance (MCM) proteins play essential roles in various cancers, but their involvement during ALI is not yet been discussed. The present study was carried out to assess the participation of IL-17A during replication stress and to evaluate the contribution of curcumin on this. Mass spectrometry-based proteomic approach has been used on mice lung tissues treated with IL-17A, as a prime mediator to cause injury and curcumin a natural polyphenol as an intervention. Several trends were identified from the proteomic subset which revealed that IL-17A induces expressions of proteins like MCM2, MCM3, and MCM6 along with other proteins involved in DR. Interestingly, curcumin was found in suppressing the expression levels of these proteins. This was also confirmed via validating LC-MS/MS data using appropriate molecular techniques. Pathway and gene ontology analysis were performed with DAVID GO databases. Apart from this, the present study also reports the unique contribution of curcumin in suppressing the mRNA levels of other MCMs like MCM4, MCM5, and MCM7 as well as of ORC1 and ORC2. Hence, the present study revolves around linking the replication stress by pro-inflammatory effects, highlighting the implications for ALI and therapies. This study, therefore, enhances our capacity to therapeutically target DR-specific proteins.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Curcumina/uso terapéutico , Interleucina-17/toxicidad , Proteínas de Mantenimiento de Minicromosoma/biosíntesis , Proteómica/métodos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Animales , Biomarcadores/metabolismo , Bleomicina/toxicidad , Curcumina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Mantenimiento de Minicromosoma/genética
16.
Am J Cancer Res ; 11(12): 5881-5901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018231

RESUMEN

Drug-resistant melanoma is very difficult to treat, and a novel approach is needed to overcome resistance. The present study aims at identifying the alternate pathways utilized in the dual drug-resistant mouse melanoma cells (B16F10R) for their survival and proliferation. The dual drug-resistant mouse melanoma, B16F10R, was established by treating the cells with a combination of U0126 (MEK1/2 inhibitor) and LY294002 (PI3K-AKT kinase inhibitor) in a dose-escalating manner till they attained a resistance fold factor of ≥2. The altered phosphoproteome in the B16F10R, as compared to the parental B16F10C, was analyzed using a high-resolution Orbitrap Fusion Tribrid mass spectrometer. Histone deacetylases 2 (HDAC2) was validated for its role in drug resistance by using its inhibitor, valproic acid (VPA). In the B16F10R cells, 363 altered phosphoproteins were identified, among which 126 were hyperphosphorylated, and 137 were hypophosphorylated (1.5-fold change). Pathway analysis shows the altered phosphoproteins are from RNA metabolism and cell cycle proteins. Inhibition of HDAC2 by VPA induces apoptosis in B16F10C and B16F10R. The present study highlights the role of HDAC2, a cell cycle regulator, in the development of resistance to dual drugs in murine melanoma. Therefore, designing leads for targeting HDAC2 along with key signaling pathways may be explored in treatment strategies.

17.
Data Brief ; 36: 107095, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34041315

RESUMEN

The dataset presented in this article is associated with the TMT (Tandem mass tag) labeled proteomics of chili pepper plant (Capsicum frutescens) infested by a broad mite (Polyphagotarsonemus latus). Data was captured using a nano liquid chromatography system coupled with high-resolution Orbitrap FusionTribridmass spectrometer. Proteomics data was analyzed using the Proteome Discoverer version 2.4 tool using MASCOT and SequestHT algorithms. We have identified a total of 5,807 proteins supported by 48,555 unique peptides and 1,279,655 peptide-spectrum matches. Individually, 5,186 proteins were detected in healthy leaf samples, 5,193 in infested leaf sample, 5,194 proteins in healthy meristem sample, and 5,196 proteins in infested meristem samples. Datasets obtained from reciprocal blast against the Arabidopsis thaliana proteome database enabled the prediction of protein-protein interactions, and subcellular localization of differentially expressed proteins, which are also included in this article. Data presented in this article has been deposited in the ProteomeXchange Consortium via the PRIDE repository, which can be accessed through the accession ID: PXD018653.

18.
J Cell Commun Signal ; 15(2): 283-290, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33136287

RESUMEN

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.

19.
Biofactors ; 47(4): 627-644, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33864298

RESUMEN

Bleomycin (BLM) injury is associated with the severity of acute lung injury (ALI) leading to fibrosis, a high-morbidity, and high-mortality respiratory disease of unknown etiology. BLM-induced ALI is marked by the activation of a potent fibrogenic cytokine transcription growth factor beta-1 (TGFß-1), which is considered a critical cytokine in the progression of alveolar injury. Previously, our work demonstrated that a diet-derived compound curcumin (diferuloylmethane), represents its antioxidative and antifibrotic application in TGF-ß1-mediated BLM-induced alveolar basal epithelial cells. However, curcumin-specific protein targets, as well as its mechanism using mass spectrometry-based proteomic approach, remain elusive. To elucidate the underlying mechanism, a quantitative proteomics approach and bioinformatics analysis were employed to identify the protein targets of curcumin in BLM or TGF-ß1-treated cells. With subsequent in vitro experiments, curcumin-related pathways and cellular processes were predicted and validated. The current study discusses two separate proteomics experiments using BLM and TGF-ß1-treated cells with the proteomics approach, various unique target proteins were identified, and proteomic analysis revealed that curcumin reversed the expressions of unique proteins like DNA topoisomerase 2-alpha (TOP2A), kinesin-like protein (KIF11), centromere protein F (CENPF), and so on BLM or TGF-ß1 injury. For the first time, the current study reveals that curcumin restores TGF-ß1 induced peroxisomes like PEX-13, PEX-14, PEX-19, and ACOX1. This was verified by subsequent in vitro assays. This study generated molecular evidence to deepen our understanding of the therapeutic role of curcumin at the proteomic level and may be useful to identify molecular targets for future drug discovery.


Asunto(s)
Antioxidantes/farmacología , Bleomicina/antagonistas & inhibidores , Curcumina/farmacología , Proteómica/métodos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Células A549 , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Antibióticos Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Sitios de Unión , Bleomicina/farmacología , Calreticulina/genética , Calreticulina/metabolismo , Curcumina/química , Curcumina/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Simulación del Acoplamiento Molecular , Colágenos no Fibrilares/genética , Colágenos no Fibrilares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , Colágeno Tipo XVII
20.
J Cell Commun Signal ; 15(3): 447-459, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33683571

RESUMEN

Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA