Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Biol ; 22(2): e3002544, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422166

RESUMEN

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Proteínas de la Nucleocápside , Humanos , Animales , Ratones , Proteínas Reguladoras y Accesorias Virales , Ubiquitina , Replicación Viral , Ebolavirus/genética
2.
PLoS Comput Biol ; 18(12): e1010777, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516216

RESUMEN

The Elastic Network Contact Model (ENCoM) is a coarse-grained normal mode analysis (NMA) model unique in its all-atom sensitivity to the sequence of the studied macromolecule and thus to the effect of mutations. We adapted ENCoM to simulate the dynamics of ribonucleic acid (RNA) molecules, benchmarked its performance against other popular NMA models and used it to study the 3D structural dynamics of human microRNA miR-125a, leveraging high-throughput experimental maturation efficiency data of over 26 000 sequence variants. We also introduce a novel way of using dynamical information from NMA to train multivariate linear regression models, with the purpose of highlighting the most salient contributions of dynamics to function. ENCoM has a similar performance profile on RNA than on proteins when compared to the Anisotropic Network Model (ANM), the most widely used coarse-grained NMA model; it has the advantage on predicting large-scale motions while ANM performs better on B-factors prediction. A stringent benchmark from the miR-125a maturation dataset, in which the training set contains no sequence information in common with the testing set, reveals that ENCoM is the only tested model able to capture signal beyond the sequence. This ability translates to better predictive power on a second benchmark in which sequence features are shared between the train and test sets. When training the linear regression model using all available data, the dynamical features identified as necessary for miR-125a maturation point to known patterns but also offer new insights into the biogenesis of microRNAs. Our novel approach combining NMA with multivariate linear regression is generalizable to any macromolecule for which relatively high-throughput mutational data is available.


Asunto(s)
MicroARNs , Humanos , MicroARNs/química , Movimiento (Física) , Conformación Proteica , Proteínas/química , Modelos Lineales
3.
PLoS Comput Biol ; 17(8): e1009286, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351895

RESUMEN

The SARS-CoV-2 Spike protein needs to be in an open-state conformation to interact with ACE2 to initiate viral entry. We utilise coarse-grained normal mode analysis to model the dynamics of Spike and calculate transition probabilities between states for 17081 variants including experimentally observed variants. Our results correctly model an increase in open-state occupancy for the more infectious D614G via an increase in flexibility of the closed-state and decrease of flexibility of the open-state. We predict the same effect for several mutations on glycine residues (404, 416, 504, 252) as well as residues K417, D467 and N501, including the N501Y mutation recently observed within the B.1.1.7, 501.V2 and P1 strains. This is, to our knowledge, the first use of normal mode analysis to model conformational state transitions and the effect of mutations on such transitions. The specific mutations of Spike identified here may guide future studies to increase our understanding of SARS-CoV-2 infection mechanisms and guide public health in their surveillance efforts.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Mutación , Conformación Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética
4.
Nucleic Acids Res ; 43(W1): W395-400, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25883149

RESUMEN

ENCoM is a coarse-grained normal mode analysis method recently introduced that unlike previous such methods is unique in that it accounts for the nature of amino acids. The inclusion of this layer of information was shown to improve conformational space sampling and apply for the first time a coarse-grained normal mode analysis method to predict the effect of single point mutations on protein dynamics and thermostability resulting from vibrational entropy changes. Here we present a web server that allows non-technical users to have access to ENCoM calculations to predict the effect of mutations on thermostability and dynamics as well as to generate geometrically realistic conformational ensembles. The server is accessible at: http://bcb.med.usherbrooke.ca/encom.


Asunto(s)
Mutación Puntual , Conformación Proteica , Estabilidad Proteica , Programas Informáticos , Entropía , Internet , Modelos Moleculares , Temperatura , Vibración
5.
Bioinformatics ; 31(23): 3856-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249810

RESUMEN

UNLABELLED: Ligand protein docking simulations play a fundamental role in understanding molecular recognition. Herein we introduce the NRGsuite, a PyMOL plugin that permits the detection of surface cavities in proteins, their refinements, calculation of volume and use, individually or jointly, as target binding-sites for docking simulations with FlexAID. The NRGsuite offers the users control over a large number of important parameters in docking simulations including the assignment of flexible side-chains and definition of geometric constraints. Furthermore, the NRGsuite permits the visualization of the docking simulation in real time. The NRGsuite give access to powerful docking simulations that can be used in structure-guided drug design as well as an educational tool. The NRGsuite is implemented in Python and C/C++ with an easy to use package installer. The NRGsuite is available for Windows, Linux and MacOS. AVAILABILITY AND IMPLEMENTATION: http://bcb.med.usherbrooke.ca/flexaid. CONTACT: rafael.najmanovich@usherbroke.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Programas Informáticos , Sitios de Unión , Ligandos , Proteínas/metabolismo
6.
Bioinformatics ; 31(1): 146-50, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25488929

RESUMEN

MOTIVATION: The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. RESULTS: An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. CONCLUSION: The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field.


Asunto(s)
Investigación Biomédica/tendencias , Biofisica/tendencias , Biología Computacional/tendencias , Logro , Humanos
7.
PLoS Comput Biol ; 10(4): e1003569, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24762569

RESUMEN

Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.


Asunto(s)
Modelos Teóricos , Mutación , Proteínas/química , Cristalografía , Elasticidad , Proteínas/genética
8.
J Chem Inf Model ; 55(7): 1323-36, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26076070

RESUMEN

Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Gráficos por Computador , Bases de Datos de Proteínas , Evaluación Preclínica de Medicamentos , Ligandos , Movimiento , Conformación Proteica , Interfaz Usuario-Computador
9.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948778

RESUMEN

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7 -/- mice exhibited increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients revealed that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus showed reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.

10.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503276

RESUMEN

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the co-factor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity that correlated with reduced replication of infectious EBOV. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.

11.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1218-25, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944214

RESUMEN

The crystal structures of SPO0140 and Sbal_2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress.


Asunto(s)
Proteínas Bacterianas/química , Pliegue de Proteína , Rhodobacteraceae/química , Shewanella/química , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Genoma Bacteriano , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Shewanella/genética , Shewanella/metabolismo , Homología Estructural de Proteína
12.
Bioinformatics ; 23(2): e104-9, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17237076

RESUMEN

MOTIVATION: In the present work we combine computational analysis and experimental data to explore the extent to which binding site similarities between members of the human cytosolic sulfotransferase family correlate with small-molecule binding profiles. Conversely, from a small-molecule point of view, we explore the extent to which structural similarities between small molecules correlate to protein binding profiles. RESULTS: The comparison of binding site structural similarities and small-molecule binding profiles shows that proteins with similar small-molecule binding profiles tend to have a higher degree of binding site similarity but the latter is not sufficient to predict small-molecule binding patterns, highlighting the difficulty of predicting small-molecule binding patterns from sequence or structure. Likewise, from a small-molecule perspective, small molecules with similar protein binding profiles tend to be topologically similar but topological similarity is not sufficient to predict their protein binding patterns. These observations have important consequences for function prediction and drug design.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Moleculares , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Sulfotransferasas/química , Sitios de Unión , Simulación por Computador , Humanos , Unión Proteica , Homología de Secuencia de Aminoácido
13.
Eur J Med Chem ; 143: 755-768, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220796

RESUMEN

Riboswitches recently emerged as possible targets for the development of alternative antimicrobial approaches. Guanine-sensing riboswitches in the bacterial pathogen Clostridioides difficile (formerly known as Clostridium difficile) constitute potential targets based on their involvement in the regulation of basal metabolic control of purine compounds. In this study, we deciphered the structure-activity relationship of several guanine derivatives on the guanine riboswitch and determined their antimicrobial activity. We describe the synthesis of purine analogs modified in ring B as well as positions 2 and 6. Their biological activity was determined by measuring their affinity for the C. difficile guanine riboswitch and their inhibitory effect on bacterial growth, including a counter-screen to discriminate against riboswitch-independent antibacterial effects. Altogether, our results suggest that improvements in riboswitch binding affinity in vitro do not necessarily translate into improved antibacterial activity in bacteria, despite the fact that some structure-activity relationship was observed at least with respect to binding affinity.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Guanina/antagonistas & inhibidores , Purinas/farmacología , Riboswitch/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/metabolismo , Relación Dosis-Respuesta a Droga , Guanina/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
14.
Curr Opin Struct Biol ; 45: 85-90, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27992825

RESUMEN

Biological processes at their most fundamental molecular aspects are defined by molecular interactions with ligand-protein interactions in particular at the core of cellular functions such as metabolism and signalling. Divergent and convergent processes shape the evolution of ligand binding sites. The competition between similar ligands and binding sites across protein families create evolutionary pressures that affect the specificity and selectivity of interactions. This short review showcases recent studies of the evolution of ligand binding-sites and methods used to detect binding-site similarities.


Asunto(s)
Evolución Molecular , Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Humanos , Ligandos
15.
BMC Pharmacol Toxicol ; 18(1): 18, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28449705

RESUMEN

BACKGROUND: Promiscuity in molecular interactions between small-molecules, including drugs, and proteins is widespread. Such unintended interactions can be exploited to suggest drug repurposing possibilities as well as to identify potential molecular mechanisms responsible for observed side-effects. METHODS: We perform a large-scale analysis to detect binding-site molecular interaction field similarities between the binding-sites of the primary target of 400 drugs against a dataset of 14082 cavities within 7895 different proteins representing a non-redundant dataset of all proteins with known structure. Statistically-significant cases with high levels of similarities represent potential cases where the drugs that bind the original target may in principle bind the suggested off-target. Such cases are further analysed with docking simulations to verify if indeed the drug could, in principle, bind the off-target. Diverse sources of data are integrated to associated potential cross-reactivity targets with side-effects. RESULTS: We observe that promiscuous binding-sites tend to display higher levels of hydrophobic and aromatic similarities. Focusing on the most statistically significant similarities (Z-score ≥ 3.0) and corroborating docking results (RMSD < 2.0 Å), we find 2923 cases involving 140 unique drugs and 1216 unique potential cross-reactivity protein targets. We highlight a few cases with a potential for drug repurposing (acetazolamide as a chorismate pyruvate lyase inhibitor, raloxifene as a bacterial quorum sensing inhibitor) as well as to explain the side-effects of zanamivir and captopril. A web-interface permits to explore the detected similarities for each of the 400 binding-sites of the primary drug targets and visualise them for the most statistically significant cases. CONCLUSIONS: The detection of molecular interaction field similarities provide the opportunity to suggest drug repurposing opportunities as well as to identify potential molecular mechanisms responsible for side-effects. All methods utilized are freely available and can be readily applied to new query binding-sites. All data is freely available and represents an invaluable source to identify further candidates for repurposing and suggest potential mechanisms responsible for side-effects.


Asunto(s)
Reposicionamiento de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Uso Fuera de lo Indicado , Preparaciones Farmacéuticas/metabolismo , Sitios de Unión , Conjuntos de Datos como Asunto , Humanos , Proteínas/metabolismo
16.
BMC Syst Biol ; 11(1): 60, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606124

RESUMEN

BACKGROUND: Type 2 diabetes is one of the leading non-infectious diseases worldwide and closely relates to excess adipose tissue accumulation as seen in obesity. Specifically, hypertrophic expansion of adipose tissues is related to increased cardiometabolic risk leading to type 2 diabetes. Studying mechanisms underlying adipocyte hypertrophy could lead to the identification of potential targets for the treatment of these conditions. RESULTS: We present iTC1390adip, a highly curated metabolic network of the human adipocyte presenting various improvements over the previously published iAdipocytes1809. iTC1390adip contains 1390 genes, 4519 reactions and 3664 metabolites. We validated the network obtaining 92.6% accuracy by comparing experimental gene essentiality in various cell lines to our predictions of biomass production. Using flux balance analysis under various test conditions, we predict the effect of gene deletion on both lipid droplet and biomass production, resulting in the identification of 27 genes that could reduce adipocyte hypertrophy. We also used expression data from visceral and subcutaneous adipose tissues to compare the effect of single gene deletions between adipocytes from each compartment. CONCLUSIONS: We generated a highly curated metabolic network of the human adipose tissue and used it to identify potential targets for adipose tissue metabolic dysfunction leading to the development of type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Simulación por Computador , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Biológicos , Adipocitos/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevención & control , Ácidos Grasos no Esterificados/sangre , Eliminación de Gen , Humanos , Redes y Vías Metabólicas , Triglicéridos/sangre
17.
Eur J Med Chem ; 129: 110-123, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28219045

RESUMEN

Matriptase-2, a type II transmembrane serine protease (TTSP), is expressed in the liver and regulates iron homeostasis via the cleavage of hemojuvelin. Matriptase-2 emerges as an attractive target for the treatment of conditions associated with iron overload, such as hemochromatosis or beta-thalassemia. Starting from the crystal structure of its closest homolog matriptase, we constructed a homology model of matriptase-2 in order to further optimize the selectivity of serine trap peptidomimetic inhibitors for matriptase-2 vs matriptase. Careful modifications of the P4, P3 and P2 positions with the help of unnatural amino acids led to a thorough understanding of Structure-Activity Relationship and a >60-fold increase in selectivity for matriptase-2 vs matriptase. Additionally, the introduction of unnatural amino acids led to significant increases in plasma stability. Such compounds represent useful pharmacological tools to test matriptase-2 inhibition in a context of iron overload.


Asunto(s)
Aminoácidos/química , Inhibidores Enzimáticos/farmacología , Sobrecarga de Hierro/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Homeostasis/efectos de los fármacos , Humanos , Hierro/metabolismo , Modelos Moleculares , Sensibilidad y Especificidad , Serina Endopeptidasas , Relación Estructura-Actividad
18.
Proteins ; 62(2): 479-88, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16304646

RESUMEN

The accurate identification of ligand binding sites in protein structures can be valuable in determining protein function. Once the binding site is known, it becomes easier to perform in silico and experimental procedures that may allow the ligand type and the protein function to be determined. For example, binding pocket shape analysis relies heavily on the correct localization of the ligand binding site. We have developed SURFNET-ConSurf, a modular, two-stage method for identifying the location and shape of potential ligand binding pockets in protein structures. In the first stage, the SURFNET program identifies clefts in the protein surface that are potential binding sites. In the second stage, these clefts are trimmed in size by cutting away regions distant from highly conserved residues, as defined by the ConSurf-HSSP database. The largest clefts that remain tend to be those where ligands bind. To test the approach, we analyzed a nonredundant set of 244 protein structures from the PDB and found that SURFNET-ConSurf identifies a ligand binding pocket in 75% of them. The trimming procedure reduces the original cleft volumes by 30% on average, while still encompassing an average 87% of the ligand volume. From the analysis of the results we conclude that for those cases in which the ligands are found in large, highly conserved clefts, the combined SURFNET-ConSurf method gives pockets that are a better match to the ligand shape and location. We also show that this approach works better for enzymes than for nonenzyme proteins.


Asunto(s)
Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Bases de Datos de Proteínas , Ligandos , Conformación Proteica , Proteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Programas Informáticos
19.
PLoS One ; 9(1): e87297, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498066

RESUMEN

Viroids are small circular single-stranded infectious RNAs characterized by a relatively high mutation level. Knowledge of their sequence heterogeneity remains largely elusive and previous studies, using Sanger sequencing, were based on a limited number of sequences. In an attempt to address sequence heterogeneity from a population dynamics perspective, a GF305-indicator peach tree was infected with a single variant of the Avsunviroidae family member Peach latent mosaic viroid (PLMVd). Six months post-inoculation, full-length circular conformers of PLMVd were isolated and deep-sequenced. We devised an original approach to the bioinformatics refinement of our sequence libraries involving important phenotypic data, based on the systematic analysis of hammerhead self-cleavage activity. Two distinct libraries yielded a total of 3,939 different PLMVd variants. Sequence variants exhibiting up to ∼17% of mutations relative to the inoculated viroid were retrieved, clearly illustrating the high level of divergence dynamics within a unique population. While we initially assumed that most positions of the viroid sequence would mutate, we were surprised to discover that ∼50% of positions remained perfectly conserved, including several small stretches as well as a small motif reminiscent of a GNRA tetraloop which are the result of various selective pressures. Using a hierarchical clustering algorithm, the different variants harvested were subdivided into 7 clusters. We found that most sequences contained an average of 4.6 to 6.4 mutations compared to the variant used to initially inoculate the plant. Interestingly, it was possible to reconstitute and compare the sequence evolution of each of these clusters. In doing so, we identified several key mutations. This study provides a reliable pipeline for the treatment of viroid deep-sequencing. It also sheds new light on the extent of sequence variation that a viroid population can sustain, and which may give rise to a quasispecies.


Asunto(s)
Frutas/virología , Virus del Mosaico/genética , Enfermedades de las Plantas/virología , Prunus/virología , Viroides/genética , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA