RESUMEN
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenkovic, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenkovic, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenkovic T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomsovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
RESUMEN
The Mycosphaerellaceae represent thousands of fungal species that are associated with diseases on a wide range of plant hosts. Understanding and stabilising the taxonomy of genera and species of Mycosphaerellaceae is therefore of the utmost importance given their impact on agriculture, horticulture and forestry. Based on previous molecular studies, several phylogenetic and morphologically distinct genera within the Mycosphaerellaceae have been delimited. In this study a multigene phylogenetic analysis (LSU, ITS and rpb2) was performed based on 415 isolates representing 297 taxa and incorporating ex-type strains where available. The main aim of this study was to resolve the phylogenetic relationships among the genera currently recognised within the family, and to clarify the position of the cercosporoid fungi among them. Based on these results many well-known genera are shown to be paraphyletic, with several synapomorphic characters that have evolved more than once within the family. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected, and 32 additional genera are described as new. Based on phylogenetic data 120 genera are now accepted within the family, but many currently accepted cercosporoid genera still remain unresolved pending fresh collections and DNA data. The present study provides a phylogenetic framework for future taxonomic work within the Mycosphaerellaceae.
RESUMEN
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
RESUMEN
Species of Pseudocercospora are commonly associated with leaf and fruit spots on diverse plant hosts in sub-tropical and tropical regions. Pseudocercospora spp. have mycosphaerella-like sexual morphs, but represent a distinct genus in Mycosphaerellaceae (Mycosphaerellales, Dothideomycetes). The present study adds a further 29 novel species of Pseudocercospora from 413 host species representing 297 host genera occurring in 60 countries and designates four epitypes and one lectotype for established names. This study recognises 329 species names, with an additional 69 phylogenetic lineages remaining unnamed due to difficulty in being able to unambiguously apply existing names to those lineages. To help elucidate the taxonomy of these species, a phylogenetic tree was generated from multi-locus DNA sequence data of the internal transcribed spacers and intervening 5.8S nuclear nrRNA gene (ITS), partial actin (actA), and partial translation elongation factor 1-alpha (tef1), as well as the partial DNA-directed RNA polymerase II second largest subunit (rpb2) gene sequences. Novel species described in this study include those from various countries as follows: Australia, Ps. acaciicola from leaf spots on Acacia sp., Ps. anopter from leaf spots on Anopterus glandulosus, Ps. asplenii from leaf spots on Asplenium dimorphum, Ps. australiensis from leaf spots on Eucalyptus gunnii, Ps. badjensis from leaf spots on Eucalyptus badjensis, Ps. erythrophloeicola from leaf spots on Erythrophleum chlorostachys, Ps. grevilleae from leaf spots on Grevillea sp., Ps. lophostemonigena from leaf spots on Lophostemon confertus, Ps. lophostemonis from leaf spots on Lophostemon lactifluus, Ps. paramacadamiae from leaf spots on Macadamia integrifolia, Ps. persooniae from leaf spots on Persoonia sp., Ps. pultenaeae from leaf spots on Pultenaea daphnoides, Ps. tristaniopsidis from leaf spots on Tristaniopsis collina, Ps. victoriae from leaf spots on Eucalyptus globoidea. Brazil, Ps. musigena from leaf spots on Musa sp. China, Ps. lonicerae-japonicae from leaf spots on Lonicera japonica, Ps. rubigena leaf spots on Rubus sp. France (Réunion), Ps. wingfieldii from leaf spots on Acacia heterophylla. Malaysia, Ps. musarum from leaf spots on Musa sp. Netherlands, Ps. rhododendri from leaf spots on Rhododendron sp. South Africa, Ps. balanitis from leaf spots on Balanites sp., Ps. dovyalidicola from leaf spots on Dovyalis zeyheri, Ps. encephalarticola from leaf spots on Encephalartos sp. South Korea, Ps. grewiana from leaf spots on Grewia biloba, Ps. parakaki from leaf spots on Diospyros kaki, Ps. pseudocydoniae from leaf spots on Chaenomeles lagenaria, Ps. paracydoniae from leaf spots on Chaenomeles speciosa. Thailand, Ps. acerigena from leaf spots on Acer sp., Ps. tectonigena from leaf spots on Tectona grandis. Epitypes are designated for Cercospora bonjeaneae-rectae, Cercospora halleriae, Ps. eucleae, and an epitype as well as a lectotype for Ps. macadamiae. Results obtained in the present study contribute to a better understanding of the host specificity and distribution in Pseudocercospora spp., many of which represent important pathogens of food or fibre crops, or organisms of quarantine concern. Citation: Groenewald JZ, Chen YY, Zhang Y, Roux J, Shin H-D, Shivas RG, Summerell BA, Braun U, Alfenas AC, Ujat AH, Nakashima C, Crous PW (2024). Species diversity in Pseudocercospora. Fungal Systematics and Evolution 13: 29-89. doi: 10.3114/fuse.2024.13.03.
RESUMEN
The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. The resulting phylogenetic clades were evaluated for application of existing species names and five novel species are introduced. Eleven species are epi-, lecto- or neotypified in this study. Although existing species names were available for several clades, it was not always possible to apply North American or European names to African or Asian strains and vice versa. Some species were found to be limited to a specific host genus, whereas others were isolated from a wide host range. No single locus was found to be the ideal DNA barcode gene for the genus, and species identification needs to be based on a combination of gene loci and morphological characters. Additional primers were developed to supplement those previously published for amplification of the loci used in this study. TAXONOMIC NOVELTIES: New species - Cercospora coniogrammes Crous & R.G. Shivas, Cercospora delaireae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora euphorbiae-sieboldianae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora pileicola C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora vignigena C. Nakash., Crous, U. Braun & H.D. Shin. Typifications: epitypifications - Cercospora alchemillicola U. Braun & C.F. Hill, Cercospora althaeina Sacc., Cercospora armoraciae Sacc., Cercospora corchori Sawada, Cercospora mercurialis Pass., Cercospora olivascens Sacc., Cercospora violae Sacc.; neotypifications - Cercospora fagopyri N. Nakata & S. Takim., Cercospora sojina Hara.
RESUMEN
Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted. TAXONOMIC NOVELTIES: New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun & H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C. Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X. Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigmina-platani Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U. Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous, Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis (E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun & Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin; Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge) Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous & K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton; Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo.
RESUMEN
Phyllosticta is a geographically widespread genus of plant pathogenic fungi with a diverse host range. This study redefines Phyllosticta, and shows that it clusters sister to the Botryosphaeriaceae (Botryosphaeriales, Dothideomycetes), for which the older family name Phyllostictaceae is resurrected. In moving to a unit nomenclature for fungi, the generic name Phyllosticta was chosen over Guignardia in previous studies, an approach that we support here. We use a multigene DNA dataset of the ITS, LSU, ACT, TEF and GPDH gene regions to investigate 129 isolates of Phyllosticta, representing about 170 species names, many of which are shown to be synonyms of the ubiquitous endophyte P. capitalensis. Based on the data generated here, 12 new species are introduced, while epitype and neotype specimens are designated for a further seven species. One species of interest is P. citrimaxima associated with tan spot of Citrus maxima fruit in Thailand, which adds a fifth species to the citrus black spot complex. Previous morphological studies lumped many taxa under single names that represent complexes. In spite of this Phyllosticta is a species-rich genus, and many of these taxa need to be recollected in order to resolve their phylogeny and taxonomy. TAXONOMIC NOVELTIES: New species - Phyllosticta abieticola Wikee & Crous, P. aloeicola Wikee & Crous, P. citrimaxima Wikee, Crous, K.D. Hyde & McKenzie, P. leucothoicola Wikee, Motohashi & Crous, P. mangifera-indica Wikee, Crous, K.D. Hyde & McKenzie, P. neopyrolae Wikee, Motohashi, Crous, K.D. Hyde & McKenzie, P. pachysandricola Wikee, Motohashi & Crous, P. paxistimae Wikee & Crous, P. podocarpicola Wikee, Crous, K.D. Hyde & McKenzie, P. rhaphiolepidis Wikee, C. Nakash. & Crous, P. rubra Wikee & Crous, P. vacciniicola Wikee, Crous, K.D. Hyde & McKenzie; New combinations - P. foliorum (Sacc.) Wikee & Crous, P. philoprina (Berk. & M.A. Curtis) Wikee & Crous; Epitypifications (basionyms) - P. concentrica Sacc., P. cussoniae Cejp, P. owaniana G. Winter; Neotypifications (basionyms) - Phyllosticta cordylinophila P.A. Young, Physalospora gregaria var. foliorum Sacc., Sphaeropsis hypoglossi Mont., Sphaeropsis minima Berk. & M.A. Curtis.
Asunto(s)
Ciclosporina/uso terapéutico , Dermatitis Atópica/sangre , Dermatitis Atópica/tratamiento farmacológico , Fármacos Dermatológicos/uso terapéutico , Interleucinas/sangre , Administración Oral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ciclosporina/administración & dosificación , Fármacos Dermatológicos/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Humanos , Masculino , Persona de Mediana Edad , Resultado del TratamientoRESUMEN
INTRODUCTION: The assessment of facial symmetry, after mandibular reconstruction, currently relies on subjective esthetic assessment by an evaluator. The present study aimed to compare conventional subjective assessment with quantitative evaluation by three-dimensional (3D) stereophotogrammetry of facial cosmetic symmetry. METHODS: This retrospective study enrolled 20 patients who underwent mandibular reconstruction with free fibula flap after segmental resection between 2014 and 2018. Subjective assessments were performed by seven clinicians at 6-12 months after surgery. Simultaneously, lower face symmetry was measured by 3D stereophotogrammetry with the VECTRA H1 system and recorded as the root mean square deviation (RMSD). Data from the subjective and quantitative evaluations were compared using Spearman's rank correlation coefficient. RESULTS: The results showed that subjective assessments were strongly and negatively correlated with RMSD (P=0.00000128). This confirmed that RMSD, obtained by 3D stereophotogrammetry, reflected the subjective assessment of symmetry in our cohort. CONCLUSIONS: Three-dimensional stereophotogrammetry of facial cosmetic symmetry will be an available quantitative method for patients with head and neck cancer after mandibular reconstruction.
Asunto(s)
Colgajos Tisulares Libres , Neoplasias de Cabeza y Cuello , Reconstrucción Mandibular , Humanos , Fotogrametría , Estudios RetrospectivosRESUMEN
To clarify the diversity of plant-parasitic Alternaria species in Japan, diseased samples were collected, and fungal isolates established in culture. We examined 85 isolates representing 23 species distributed in 14 known sections based on conidial morphology and DNA phylogeny. Three species were found to be new, A. cylindrica, A. paragomphrenae and A. triangularis. Furthermore, a lectotype was designated for A. gomphrenae, and epitypes for A. cinerariae, A. gomphrenae, A. iridicola, and A. japonica. Species boundaries of isolates were also clarified by studying phenotypes and determining host ranges. Alternaria gomphrenae and related species in sect. Alternantherae were recognized as distinct species owing to their host specificity. Among the species infecting Apiaceae, the pathogenicity of A. cumini and a novel species, A. triangularis ex Bupleurum, were confirmed as host specific. Another novel species, A. cylindrica, proved to be host specific to Petunia. Alternaria iridicola was recognized as a large-spored species in sect. Alternaria, being host specific to Iris spp. On the other hand, the experimental host ranges of three morphologically and phylogenetically distinct species infecting Brassicaceae (A. brassicae, A. brassicicola, and A. japonica) showed almost no differences. Alternaria brassicicola and A. porri were even found on non-host plants. In general, host ranges of Alternaria species correlated with morphology and molecular phylogeny, and combining these datasets resulted in clearer species boundaries.
RESUMEN
A worldwide survey of cercosporoid ascomycete species on hosts of the genus Diospyros (persimmon) with key to the species based on characters in vivo is provided. Special emphasis is placed on species of the genus Pseudocercospora, which are in part also phylogenetically analysed, using a multilocus approach. Species of the latter genus proved to be very diverse, with a remarkable degree of cryptic speciation. Seven new species are described (Pseudocercospora diospyri-japonicae, P. diospyriphila, P. ershadii, P. kakiicola, P. kobayashiana, and P. tesselata), and two new names are introduced [P. kakiigena (≡ Cylindrosporium kaki, non Pseudocercospora kaki), and Zasmidium diospyri-hispidae (≡ Passalora diospyri, non Zasmidium diospyri)]. Six taxa are lectotypified (Cercospora atra, C. diospyri, C. diospyri var. ferruginea, C. flexuosa, C. fuliginosa, C. kaki), and Pseudocercospora kaki is epitypified.
RESUMEN
Infliximab is a tumour necrosis factor (TNF)-alpha blocking drug classified as a biological response modifier. It has been suggested that the risk of malignancies, especially lymphomas, is increased in patients with rheumatoid arthritis (RA) treated with anti-TNF-alpha antibody therapy. We present a case of malignant lymphoma during the treatment of RA with infliximab and methotrexate.
Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Antirreumáticos/efectos adversos , Artritis Reumatoide/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/inducido químicamente , Metotrexato/efectos adversos , Neoplasias Cutáneas/inducido químicamente , Incompatibilidad de Medicamentos , Femenino , Humanos , Infliximab , Neoplasias Hepáticas/secundario , Linfoma de Células B Grandes Difuso/diagnóstico , Persona de Mediana Edad , Neoplasias Cutáneas/diagnóstico , Pared Torácica , Resultado del TratamientoRESUMEN
The genus Tubakia is revised on the basis of morphological and phylogenetic data. The phylogenetic affinity of Tubakia to the family Melanconiellaceae (Diaporthales) was recently postulated, but new analyses based on sequences retrieved from material of the type species of Tubakia, T. dryina, support a family of its own, viz. Tubakiaceae fam. nov. Our phylogenetic analyses revealed the heterogeneity of Tubakia s. lat. which is divided into several genera, viz., Tubakia s. str., Apiognomonioides gen. nov. (type species: Apiognomonioides supraseptata), Involutiscutellula gen. nov. (type species: Involutiscutellula rubra), Oblongisporothyrium gen. nov. (type species: Oblongisporothyrium castanopsidis), Paratubakia gen. nov. (type species: Paratubakia subglobosa), Racheliella gen. nov. (type species: Racheliella wingfieldiana sp. nov.), Saprothyrium gen. nov. (type species: Saprothyrium thailandense) and Sphaerosporithyrium gen. nov. (type species: Sphaerosporithyrium mexicanum sp. nov.). Greeneria saprophytica is phylogenetically closely allied to Racheliella wingfieldiana and is therefore reallocated to Racheliella. Particular emphasis is laid on a revision and phylogenetic analyses of Tubakia species described from Japan and North America. Almost all North American collections of this genus were previously referred to as T. dryina s. lat., which is, however, a heterogeneous complex. Several new North American species have recently been described. The new species Sphaerosporithyrium mexicanum, Tubakia melnikiana and T. sierrafriensis, causing leaf spots on several oak species found in the North-Central Mexican state Aguascalientes and the North-Eastern Mexican state Nuevo León, are described, illustrated, and compared with similar species. Several additional new species are introduced, including Tubakia californica based on Californian collections on various species of the genera Chrysolepis, Notholithocarpus and Quercus, and T. dryinoides, T. oblongispora, T. paradryinoides, and Paratubakia subglobosoides described on the basis of Japanese collections. Tubakia suttoniana nom. nov., based on Dicarpella dryina, is a species closely allied to T. californica and currently only known from Europe. Tubakia dryina, type species of Tubakia, is epitypified, and the phylogenetic position and circumscription of Tubakia are clarified. A revised, supplemented key to the species of Tubakia and allied genera on the basis of conidiomata is provided.
RESUMEN
Root rot of cocoyam (Xanthosoma sagittifolium L. Schott) caused by Pythium myriotylum Drechsler is a major disease of this crop in Africa (1,2) but is unreported from other regions of the world. During September 1999, commercially grown cocoyam (cv. Ratu-kiri-ala) in Gampaha (7°05'N, 80°00'E), Sri Lanka suffered from severe root rot. Initial symptoms were water-soaked lesions at the root tips that gradually enlarged to rot the entire root system and tuber. Wilting and yellowing of leaves were observed in advanced stages of disease. A Pythium sp. was regularly isolated from the affected roots and an isolate, SC5, was identified as P. myriotylum on the basis of morphology and the internal transcribed spacer (ITS) rDNA sequence. Characteristics of isolate SC5, grown on a grass-leaf water culture (3) were main hyphae up to 8.5 µm wide, oogonia terminal or intercalary (22.5 to 33.8 µm in diameter), antheridia diclinous occasionally monoclinous, one to eight per oogonium, stalks branched, often more or less loosely enveloping the oogonium, antheridium clavate or crook-necked, making apical contact with the oogonium, breadth of antheridium 2.5 to 7.0 µm, oospores aplerotic (17.0 to 22.5 µm in diameter), oospore wall 0.8 to 2.0 µm in thickness, sporangia terminal or intercalary, filamentous, inflated lobulate, and digitate, of variable length, breadth of sporangia 7.0 to 17.5 µm, formed in water; zoospores formed at 25°C, and diameter of encysted zoospores 10.0 to 12.5 µm. Cardinal temperatures on potato carrot agar 8°C minimum, 34°C optimum, and 37°C maximum with daily radial growth rate for 34°C at 32.8 mm. The ITS rDNA sequence of the isolate matched the sequences of P. myriotylum in GenBank (Accession Nos. AB095051 and AF452156) and isolate CBS254.70 used for the species description by van der Plaats-Niterink (3). The sequence of SC5 has been deposited in GenBank, Accession No. DQ102701. Pathogenicity tests used potted cocoyam plants (20 cm high), planted in an autoclaved potting mix. Four agar disks (8 mm in diameter) of isolate SC5 grown at 25°C for 48 h on potato dextrose agar was mashed and injected at a depth of 2 to 3 cm in the soil around the roots. Inoculated plants were placed in transparent plastic bags and kept for 7 days in a growth chamber maintained at 24 to 26°C with continuous light (52 to 98 µmol m-2·s-1). The experiment was carried out twice with three replications for each test. Dark brown rotting on roots and wilting of leaves were observed in 7 days after the inoculation. P. myriotylum was reisolated from diseased tissues and found to be morphologically identical to the original isolate SC5. Noninoculated control plants remained healthy. On the basis of the symptoms, morphological and molecular characteristics and confirmation of pathogenicity, P. myriotylum is the causal agent of root rot of cocoyam. To our knowledge, this is the first report of P. myriotylum causing root rot of cocoyam in Sri Lanka. References: (1) S. Nzietchueng. L'agronomie Tropicale 38:321, 1983. (2) R. P. Pacumbaba et al. J. Phytopathol. 135:265, 1992. (3) A. J. Van Der Plaats-Niterink. Stud. Mycol. 21:1, 1981.
RESUMEN
Injection of charged particle beam into a toroidal magnetic trap enables a variety of interesting experiments on non-neutral plasmas. Stationary radial electric field has been produced in a toroidal geometry by injecting electrons continuously. When an electron gun is placed near an X point of magnetic separatrix, the electron beam spreads efficiently through chaotic orbits, and electrons distribute densely in the torus. The current returning back to the gun can be minimized less than 1% of the total emission.
RESUMEN
PURPOSE: To analyse clinical features, systemic associations, treatment and visual outcomes in Japanese patients with scleritis. METHODS: Clinical records of 83 patients with scleritis who presented between 1998 and 2008 to the Ocular Inflammation Service of the Kyorin Eye Center, Tokyo, were reviewed. RESULTS: Of the 83 patients, 57 (69%) had diffuse anterior scleritis, 9 (11%) had nodular anterior scleritis, 8 (10%) had necrotising anterior scleritis and 9 (11%) had posterior scleritis. There was a slight predominance of women (55%) and unilateral disease (53%). Mean age at presentation was 51 years (range 12-82 years). Secondary ocular complications were observed in 78% of patients, including anterior uveitis in 25% and increased intraocular pressure in 40%. Investigation revealed a systemic disease association in 24 patients (29%), including six patients (7.2%) with tuberculosis and 18 patients (22%) with rheumatologic disease. Thirty-five patients (42%) received systemic corticosteroid treatment and 19 patients (23%) received immunosuppressive agents. All 17 patients with necrotising anterior scleritis or posterior scleritis were treated with oral corticosteroids and/or immunosuppressive drugs. Visual outcomes were generally good; however, poorer outcomes were observed in eyes with necrotising scleritis, mostly due to corneal ulceration or corneal opacification. CONCLUSIONS: A systemic disease association was identified in 29% of Japanese patients with scleritis. Roughly one-half of patients received oral corticosteroids and/or immunosuppressive drugs to control inflammation, with generally good visual outcomes.
Asunto(s)
Escleritis/etiología , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antiinflamatorios no Esteroideos/uso terapéutico , Niño , Femenino , Humanos , Inmunosupresores/uso terapéutico , Japón , Persona de Mediana Edad , Estudios Retrospectivos , Escleritis/tratamiento farmacológico , Escleritis/fisiopatología , Resultado del Tratamiento , Agudeza Visual/fisiología , Adulto JovenRESUMEN
We describe an improved in-vitro procedure for detection of endotoxin in human blood and plasma by use of Limulus amoebocyte lysate. Increasing concentrations of Escherichia coli endotoxin added to a constant amount of the lysate cause a proportional increase in protein precipitated by the endotoxin. By measuring the amount of protein precipitated, it was possible to determine the equivalent E. coli endotoxin concentration in unknown samples, when samples were run with E. coli endotoxin standards and negative controls. The E. coli endotoxin, present in human whole blood and platelet-rich plasma, failed to react with the lysate. However, the concentration of endotoxin in whole blood and platelet-rich plasma could be measured with this Limulus test after lysing the platelets to release the endotoxin and subsequently removing the inhibitory proteins by chloroform precipitation. With this procedure it was possible accurately and repeatedly to determine E. coli equivalent endotoxin concentrations as low as 195 ng per liter of whole blood or 49 ng per liter of platelet-rich plasma.
Asunto(s)
Endotoxinas/sangre , Análisis de Varianza , Plaquetas/análisis , Escherichia coli , Humanos , Métodos , Microquímica , PirógenosRESUMEN
A pure-electron plasma has been confined in a toroidal magnetic-surface configuration for as long as classical diffusion time due to neutral collisions. By controlling the potential of the internal conductor, long-term stable confinement of electrons has been achieved in a toroidal geometry.