Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255484

RESUMEN

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Giberelinas/biosíntesis , Tallos de la Planta/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
2.
Mol Cell ; 35(3): 258-9, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19683490

RESUMEN

In this issue of Molecular Cell, Huang et al. (2009) describe two heterotrimeric single-stranded DNA binding complexes, SOSS1 and SOSS2, that function downstream of the MRN complex to promote DNA repair and the G2/M checkpoint.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/fisiología , Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Estabilidad Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología
3.
Dev Biol ; 397(2): 203-11, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25448698

RESUMEN

Extracellular cAMP functions as a primary ligand for cell surface cAMP receptors throughout Dictyostelium discoideum development, controlling chemotaxis and morphogenesis. The developmental consequences of cAMP signaling and the metabolism of cAMP have been studied in great detail, but it has been unclear how cells export cAMP across the plasma membrane. Here we show pharmacologically and genetically that ABC transporters mediate cAMP export. Using an evolutionary-developmental biology approach, we identified several candidate abc genes and characterized one of them, abcB3, in more detail. Genetic and biochemical evidence suggest that AbcB3 is a component of the cAMP export mechanism in D. discoideum development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/crecimiento & desarrollo , Morfogénesis/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Transducción de Señal/fisiología
4.
PLoS Comput Biol ; 11(10): e1004552, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26465776

RESUMEN

Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets.


Asunto(s)
Compresión de Datos/métodos , Bases de Datos Genéticas , Dictyostelium/metabolismo , Dictyostelium/microbiología , Bacterias Gramnegativas/fisiología , Proteínas Protozoarias/metabolismo , Proliferación Celular/fisiología , Minería de Datos/métodos , Proteínas Protozoarias/genética
5.
J Biol Chem ; 286(43): 37320-7, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21908846

RESUMEN

ATR (ataxia telangiectasia-mutated and Rad3-related) contains 16 conserved candidate autophosphorylation sites that match its preferred S/TQ consensus. To determine whether any is functionally important, we mutated the 16 candidate residues to alanine in a single cDNA to create a 16A-ATR mutant. The 16A-ATR mutant maintains kinase and G(2) checkpoint activities. However, it fails to rescue the essential function of ATR in maintaining cell viability and fails to promote replication recovery from a transient exposure to replication stress. Further analysis identified T1566A/T1578A/T1589A (3A-ATR) as critical mutations causing this separation of function activity. Secondary structure predictions indicate that these residues occur in a region between ATR HEAT repeats 31R and 32R that aligns with regions of ATM and DNA-PK containing regulatory autophosphorylation sites. Although this region is important for ATR function, the 3A-ATR residues do not appear to be sites of autophosphorylation. Nevertheless, our analysis identifies an important regulatory region of ATR that is shared among the PI3K-related protein kinase family. Furthermore, our data indicate that the essential function of ATR for cell viability is linked to its function in promoting proper replication in the context of replication stress and is independent of G(2) checkpoint activity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G2/fisiología , Mutación Missense , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas Supresoras de Tumor/metabolismo , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Supervivencia Celular/fisiología , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Estructura Secundaria de Proteína , Proteínas Supresoras de Tumor/genética
6.
J Biol Chem ; 286(33): 28707-28714, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21705319

RESUMEN

The DNA damage response kinases ataxia telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK), and ataxia telangiectasia-mutated and Rad3-related (ATR) signal through multiple pathways to promote genome maintenance. These related kinases share similar methods of regulation, including recruitment to specific nucleic acid structures and association with protein activators. ATM and DNA-PK also are regulated via phosphorylation, which provides a convenient biomarker for their activity. Whether phosphorylation regulates ATR is unknown. Here we identify ATR Thr-1989 as a DNA damage-regulated phosphorylation site. Selective inhibition of ATR prevents Thr-1989 phosphorylation, and phosphorylation requires ATR activation. Cells engineered to express only a non-phosphorylatable T1989A mutant exhibit a modest ATR functional defect. Our results suggest that, like ATM and DNA-PK, phosphorylation regulates ATR, and phospho-peptide specific antibodies to Thr-1989 provide a proximal marker of ATR activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Treonina/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Daño del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/fisiología , Humanos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Treonina/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Biochem J ; 436(3): 527-36, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21615334

RESUMEN

Preservation of genome integrity via the DNA-damage response is critical to prevent disease. ATR (ataxia telangiectasia mutated- and Rad3-related) is essential for life and functions as a master regulator of the DNA-damage response, especially during DNA replication. ATR controls and co-ordinates DNA replication origin firing, replication fork stability, cell cycle checkpoints and DNA repair. Since its identification 15 years ago, a model of ATR activation and signalling has emerged that involves localization to sites of DNA damage and activation through protein-protein interactions. Recent research has added an increasingly detailed understanding of the canonical ATR pathway, and an appreciation that the canonical model does not fully capture the complexity of ATR regulation. In the present article, we review the ATR signalling process, focusing on mechanistic findings garnered from the identification of new ATR-interacting proteins and substrates. We discuss how to incorporate these new insights into a model of ATR regulation and point out the significant gaps in our understanding of this essential genome-maintenance pathway.


Asunto(s)
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/fisiología , Reparación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Proteínas Portadoras/fisiología , Daño del ADN , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Humanos , Homólogo 1 de la Proteína MutL , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/fisiología , Proteínas Nucleares/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-ets/fisiología , Transducción de Señal/genética
8.
Proc Natl Acad Sci U S A ; 105(48): 18730-4, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19028869

RESUMEN

The Saccharomyces cerevisiae Mec1-Ddc2 checkpoint kinase complex (the ortholog to human ATR-ATRIP) is an essential regulator of genomic integrity. The S. cerevisiae BRCT repeat protein Dpb11 functions in the initiation of both DNA replication and cell cycle checkpoints. Here, we report a genetic and physical interaction between Dpb11 and Mec1-Ddc2. A C-terminal domain of Dpb11 is sufficient to associate with Mec1-Ddc2 and strongly stimulates the kinase activity of Mec1 in a Ddc2-dependent manner. Furthermore, Mec1 phosphorylates Dpb11 and thereby amplifies the stimulating effect of Dpb11 on Mec1-Ddc2 kinase activity. Thus, Dpb11 is a functional ortholog of human TopBP1, and the Mec1/ATR activation mechanism is conserved from yeast to humans.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular/genética , Daño del ADN , Reparación del ADN , Activación Enzimática , Humanos , Hidroxiurea/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS One ; 9(6): e99397, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901225

RESUMEN

Subcellular localization, protein interactions, and post-translational modifications regulate the DNA damage response kinases ATR, ATM, and DNA-PK. During an analysis of putative ATR phosphorylation sites, we found that a single mutation at S1333 creates a hyperactive kinase. In vitro and in cells, mutation of S1333 to alanine (S1333A-ATR) causes elevated levels of kinase activity with and without the addition of the protein activator TOPBP1. S1333 mutations to glycine, arginine, or lysine also create a hyperactive kinase, while mutation to aspartic acid decreases ATR activity. S1333A-ATR maintains the G2 checkpoint and promotes completion of DNA replication after transient exposure to replication stress but the less active kinase, S1333D-ATR, has modest defects in both of these functions. While we find no evidence that S1333 is phosphorylated in cultured cells, our data indicate that small changes in the HEAT repeats can have large effects on kinase activity. These mutants may serve as useful tools for future studies of the ATR pathway.


Asunto(s)
Serina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Células HCT116 , Células HEK293 , Humanos , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Unión Proteica , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Radiación Ionizante , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA