Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Phys J E Soft Matter ; 47(3): 21, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538808

RESUMEN

Tissues consist of cells with different molecular and/or mechanical properties. Measuring the forces and stresses in mixed-cell populations is essential for understanding the mechanisms by which tissue development, homeostasis, and disease emerge from the cooperation of distinct cell types. However, many previous studies have primarily focused their mechanical measurements on dissociated cells or aggregates of a single-cell type, leaving the mechanics of mixed-cell populations largely unexplored. In the present study, we aimed to elucidate the influence of interactions between different cell types on cell mechanics by conducting in situ mechanical measurements on a monolayer of mammalian epithelial cells. Our findings revealed that while individual cell types displayed varying magnitudes of traction and intercellular stress before mixing, these mechanical values shifted in the mixed monolayer, becoming nearly indistinguishable between the cell types. Moreover, by analyzing a mixed-phase model of active tissues, we identified physical conditions under which such mechanical convergence is induced. Overall, the present study underscores the importance of in situ mechanical measurements in mixed-cell populations to deepen our understanding of the mechanics of multicellular systems.


Asunto(s)
Células Epiteliales , Mamíferos , Animales , Fenómenos Biomecánicos , Estrés Mecánico
2.
PLoS Comput Biol ; 16(2): e1007649, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084125

RESUMEN

In multi-ciliated cells, directed and synchronous ciliary beating in the apical membrane occurs through appropriate configuration of basal bodies (BBs, roots of cilia). Although it has been experimentally shown that the position and orientation of BBs are coordinated by apical cytoskeletons (CSKs), such as microtubules (MTs), and planar cell polarity (PCP), the underlying mechanism for achieving the patterning of BBs is not yet understood. In this study, we propose that polarity in bundles of apical MTs play a crucial role in the patterning of BBs. First, the necessity of the polarity was discussed by theoretical consideration on the symmetry of the system. The existence of the polarity was investigated by measuring relative angles between the MTs and BBs using published experimental data. Next, a mathematical model for BB patterning was derived by combining the polarity and self-organizational ability of CSKs. In the model, BBs were treated as finite-size particles in the medium of CSKs and excluded volume effects between BBs and CSKs were taken into account. The model reproduces the various experimental observations, including normal and drug-treated phenotypes. Our model with polarity provides a coherent and testable mechanism for apical BB pattern formation. We have also discussed the implication of our study on cell chirality.


Asunto(s)
Cuerpos Basales/fisiología , Cilios/fisiología , Citoesqueleto/fisiología , Animales , Membrana Celular , Polaridad Celular , Simulación por Computador , Elasticidad , Células Epiteliales/citología , Ratones , Microtúbulos/fisiología , Modelos Teóricos , Nocodazol/farmacología , Fenotipo , Tráquea/fisiología
3.
Biochem Biophys Res Commun ; 511(4): 820-825, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30846209

RESUMEN

The complexity of chromatin dynamics is orchestrated by several active processes. In fission yeast, the centromeres are clustered around the spindle pole body (SPB) and oscillate in a microtubule- and adenosine triphosphate (ATP)-dependent manner. However, whether and how SPB oscillation are affected by different environmental conditions remain poorly understood. In this study, we quantitated movements of the SPB component, which colocalizes with the centromere in fission yeast. We found that SPB movement was significantly reduced at low glucose concentrations. Movement of the SPB was also affected by the presence of ammonium chloride. Power spectral analysis revealed that periodic movement of the SPB is disrupted by low glucose concentrations. Measurement of ATP levels in living cells by quantitative single-cell imaging suggests that ATP levels are not the only determinant of SPB movement. Our results provide novel insight into how SPB movement is regulated by cellular energy status and additional factors such as the medium nutritional composition.


Asunto(s)
Cloruro de Amonio/metabolismo , Glucosa/metabolismo , Schizosaccharomyces/metabolismo , Cuerpos Polares del Huso/metabolismo , Adenosina Trifosfato/metabolismo , Centrómero/metabolismo , Schizosaccharomyces/citología
4.
J Theor Biol ; 454: 367-375, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29969599

RESUMEN

The random motion of E. coli is driven by multiple flagella motors. When all motors rotate in the counter clockwise direction, the bacteria swims smoothly. A recent experimental report by Terasawa et al. [Biophys J,100,2193,(2011)] demonstrated that a coordination of the motors can occur through signaling pathways, and perturbation of a regulatory molecule disrupted the coordination. Here, we develop a mathematical model to show that a large temporal fluctuation in the regulator concentration can induce a correlated switching of the multiple motors. Such a large fluctuation is generated by a chemotaxis receptor cluster in unilateral cell pole, which then exhibits a spatial propagation through the cytoplasm from the receptor position to the motor around cell periphery. Our numerical simulation successfully reproduces synchronized switching and the lag time in the motions of two distant motors, which has been observed experimentally. We further show that the large fluctuation in the regulator concentration at the motor positions can expand the dynamic range that the motor can respond, which confers robustness to the signaling system.


Asunto(s)
Quimiotaxis/fisiología , Escherichia coli/fisiología , Flagelos/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Movimiento (Física) , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Escherichia coli/metabolismo , Modelos Teóricos , Transducción de Señal/fisiología
5.
Biophys J ; 103(6): 1390-9, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22995512

RESUMEN

Complex networks of interacting molecular components of living cells are responsible for many important processes, such as signal processing and transduction. An important challenge is to understand how the individual properties of these molecular interactions and biochemical transformations determine the system-level properties of biological functions. Here, we address the issue of the accuracy of signal transduction performed by a bacterial chemotaxis system. The chemotaxis sensitivity of bacteria to a chemoattractant gradient has been measured experimentally from bacterial aggregation in a chemoattractant-containing capillary. The observed precision of the chemotaxis depended on environmental conditions such as the concentration and molecular makeup of the chemoattractant. In a quantitative model, we derived the chemotactic response function, which is essential to describing the signal transduction process involved in bacterial chemotaxis. In the presence of a gradient, an analytical solution is derived that reveals connections between the chemotaxis sensitivity and the characteristics of the signaling system, such as reaction rates. These biochemical parameters are integrated into two system-level parameters: one characterizes the efficiency of gradient sensing, and the other is related to the dynamic range of chemotaxis. Thus, our approach explains how a particular signal transduction property affects the system-level performance of bacterial chemotaxis. We further show that the two parameters can be derived from published experimental data from a capillary assay, which successfully characterizes the performance of bacterial chemotaxis.


Asunto(s)
Bacterias/citología , Quimiotaxis , Modelos Biológicos , Transducción de Señal , Adaptación Fisiológica , Bacterias/metabolismo , Metilación
6.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929515

RESUMEN

Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.


Asunto(s)
Proteínas Portadoras/genética , Cilios/genética , Depuración Mucociliar/genética , Tráquea/crecimiento & desarrollo , Animales , Cuerpos Basales/metabolismo , Polaridad Celular/genética , Células Epiteliales/metabolismo , Ratones , Ratones Noqueados , Microtúbulos/genética , Tráquea/metabolismo
7.
Sci Transl Med ; 13(601)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233948

RESUMEN

Mucociliary clearance is an essential lung function that facilitates the removal of inhaled pathogens and foreign matter unidirectionally from the airway tract and is innately achieved by coordinated ciliary beating of multiciliated cells. Should ciliary function become disturbed, mucus can accumulate in the airway causing subsequent obstruction and potentially recurrent pneumonia. However, it has been difficult to recapitulate unidirectional mucociliary flow using human-derived induced pluripotent stem cells (iPSCs) in vitro and the mechanism governing the flow has not yet been elucidated, hampering the proper humanized airway disease modeling. Here, we combine human iPSCs and airway-on-a-chip technology, to demonstrate the effectiveness of fluid shear stress (FSS) for regulating the global axis of multicellular planar cell polarity (PCP), as well as inducing ciliogenesis, thereby contributing to quantifiable unidirectional mucociliary flow. Furthermore, we applied the findings to disease modeling of primary ciliary dyskinesia (PCD), a genetic disease characterized by impaired mucociliary clearance. The application of an airway cell sheet derived from patient-derived iPSCs and their gene-edited counterparts, as well as genetic knockout iPSCs of PCD causative genes, made it possible to recapitulate the abnormal ciliary functions in organized PCP using the airway-on-a-chip. These findings suggest that the disease model of PCD developed here is a potential platform for making diagnoses and identifying therapeutic targets and that airway reconstruction therapy using mechanical stress to regulate PCP might have therapeutic value.


Asunto(s)
Ciliopatías , Células Madre Pluripotentes Inducidas , Cilios , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica
8.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31399484

RESUMEN

The paracellular barrier function of tight junctions (TJs) in epithelial cell sheets is robustly maintained against mechanical fluctuations, by molecular mechanisms that are poorly understood. Vinculin is an adaptor of a mechanosensory complex at the adherens junction. Here, we generated vinculin KO Eph4 epithelial cells and analyzed their confluent cell-sheet properties. We found that vinculin is dispensable for the basic TJ structural integrity and the paracellular barrier function for larger solutes. However, vinculin is indispensable for the paracellular barrier function for ions. In addition, TJs stochastically showed dynamically distorted patterns in vinculin KO cell sheets. These KO phenotypes were rescued by transfecting full-length vinculin and by relaxing the actomyosin tension with blebbistatin, a myosin II ATPase activity inhibitor. Our findings indicate that vinculin resists mechanical fluctuations to maintain the TJ paracellular barrier function for ions in epithelial cell sheets.


Asunto(s)
Células Epiteliales/citología , Vinculina/genética , Vinculina/metabolismo , Actomiosina/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Iones/metabolismo , Procesos Estocásticos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA