Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 111(8): 1673-1699, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39084224

RESUMEN

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.


Asunto(s)
Transdiferenciación Celular , Fibroblastos , Neuronas , Activación Transcripcional , Humanos , Transdiferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citología , Neuronas/metabolismo , Neuronas/citología , ARN/genética , ARN/metabolismo , Sistemas CRISPR-Cas
2.
J Med Genet ; 61(8): 803-809, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38834293

RESUMEN

BACKGROUND: No validation has been conducted for the BOADICEA multifactorial breast cancer risk prediction model specifically in BRCA1/2 pathogenic variant (PV) carriers to date. Here, we evaluated the performance of BOADICEA in predicting 5-year breast cancer risks in a prospective cohort of BRCA1/2 PV carriers ascertained through clinical genetic centres. METHODS: We evaluated the model calibration and discriminatory ability in the prospective TRANsIBCCS cohort study comprising 1614 BRCA1 and 1365 BRCA2 PV carriers (209 incident cases). Study participants had lifestyle, reproductive, hormonal, anthropometric risk factor information, a polygenic risk score based on 313 SNPs and family history information. RESULTS: The full multifactorial model considering family history together with all other risk factors was well calibrated overall (E/O=1.07, 95% CI: 0.92 to 1.24) and in quintiles of predicted risk. Discrimination was maximised when all risk factors were considered (Harrell's C-index=0.70, 95% CI: 0.67 to 0.74; area under the curve=0.79, 95% CI: 0.76 to 0.82). The model performance was similar when evaluated separately in BRCA1 or BRCA2 PV carriers. The full model identified 5.8%, 12.9% and 24.0% of BRCA1/2 PV carriers with 5-year breast cancer risks of <1.65%, <3% and <5%, respectively, risk thresholds commonly used for different management and risk-reduction options. CONCLUSION: BOADICEA may be used to aid personalised cancer risk management and decision-making for BRCA1 and BRCA2 PV carriers. It is implemented in the free-access CanRisk tool (https://www.canrisk.org/).


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Proteína BRCA2/genética , Proteína BRCA1/genética , Persona de Mediana Edad , Adulto , Estudios Prospectivos , Factores de Riesgo , Medición de Riesgo , Polimorfismo de Nucleótido Simple/genética
3.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787418

RESUMEN

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño
4.
Clin Genet ; 105(5): 555-560, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38287449

RESUMEN

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Mutación , Mutación Missense/genética , Fenotipo , Factores de Transcripción/genética
5.
Prenat Diagn ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138116

RESUMEN

OBJECTIVE: Prenatal exome sequencing (pES) is now commonly used in clinical practice. It can be used to identifiy an additional diagnosis in around 30% of fetuses with structural defects and normal chromosomal microarray analysis (CMA). However, interpretation remains challenging due to the limited prenatal data for genetic disorders. METHOD: We conducted an ancillary study including fetuses with pathogenic/likely pathogenic variants identified by trio-pES from the "AnDDI-Prenatome" study. The prenatal phenotype of each patient was categorized as typical, uncommon, or unreported based on the comparison of the prenatal findings with documented findings in the literature and public phenotype-genotype databases (ClinVar, HGMD, OMIM, and Decipher). RESULTS: Prenatal phenotypes were typical for 38/56 fetuses (67.9%). For the others, genotype-phenotype associations were challenging due to uncommon prenatal features (absence of recurrent hallmark, rare, or unreported). We report the first prenatal features associated with LINS1 and PGM1 variants. In addition, a double diagnosis was identified in three fetuses. CONCLUSION: Standardizing the description of prenatal features, implementing longitudinal prenatal follow-up, and large-scale collection of prenatal features are essential steps to improving pES data interpretation.

7.
Eur J Hum Genet ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802530

RESUMEN

Generation and subsequently accessibility of secondary findings (SF) in diagnostic practice is a subject of debate around the world and particularly in Europe. The French FIND study has been set up to assess patient/parent expectations regarding SF from exome sequencing (ES) and to collect their real-life experience until 1 year after the delivery of results. 340 patients who had ES for undiagnosed developmental disorders were included in this multicenter mixed study (quantitative N = 340; qualitative N = 26). Three groups of actionable SF were rendered: predisposition to late-onset actionable diseases; genetic counseling; pharmacogenomics. Participants expressed strong interest in obtaining SF and a high satisfaction level when a SF is reported. The medical actionability of the SF reinforced parents' sense of taking action for their child and was seen as an opportunity. While we observed no serious psychological concerns, we showed that these results could have psychological consequences, in particular for late-onset actionable diseases SF, within families already dealing with rare diseases. This study shows that participants remain in favor of accessing SF despite the potential psychological, care, and lifestyle impacts, which are difficult to anticipate. The establishment of a management protocol, including the support of a multidisciplinary team, would be necessary if national policy allows the reporting of these data.

8.
Heart Rhythm ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134129

RESUMEN

BACKGROUND: SCN5A variants are associated with a spectrum of cardiac electrical disorders with clear phenotypes. However, they may also be associated with complex phenotypic traits like overlap syndromes, or pleiotropy, which have not been systematically described. Additionally, the involvement of SCN5A in dilated cardiomyopathies (DCM) remains controversial. OBJECTIVE: We aimed to (1) evaluate the different phenotypes associated with pathogenic (P)/likely pathogenic (LP) SCN5A variants and (2) determine the prevalence of pleiotropy in a large multicentric cohort of P/LP SCN5A variant carriers. METHODS: The DNA of 13,510 consecutive probands (9960 with cardiomyopathies) was sequenced using a custom panel of genes. Individuals carrying a heterozygous single P/LP SCN5A variant were selected and phenotyped. RESULTS: The study included 170 P/LP variants found in 495 patients. Among them, 119 (70%) were exclusively associated with a single well-established phenotype: 91 with Brugada syndrome, 15 with type 3 long QT syndrome, six with progressive cardiac conduction disease, four with multifocal ectopic Purkinje-related premature contraction, and three with sick sinus syndrome. Thirty-two variants (19%) were associated with overlap syndromes and/or pleiotropy. The 19 remaining variants (11%) were associated with atypical or unclear phenotypes. Among those, eight were carried by eight patients presenting with DCM with a debatable causative genotype/phenotype link. CONCLUSION: Most P/LP SCN5A variants were found in patients with primary electrical disorders, mainly Brugada syndrome. Nearly 20% were associated with overlap syndromes or pleiotropy, underscoring the need for comprehensive phenotypic evaluation. The concept of SCN5A variants causing DCM is extremely rare (8/9960), if not questionable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA