Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Periodontol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660744

RESUMEN

AIM: This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS: Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS: Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS: Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.

2.
J Proteome Res ; 22(4): 1092-1104, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36939687

RESUMEN

Mass spectrometry is widely used for quantitative proteomics studies, relative protein quantification, and differential expression analysis of proteins. There is a large variety of quantification software and analysis tools. Nevertheless, there is a need for a modular, easy-to-use application programming interface in R that transparently supports a variety of well principled statistical procedures to make applying them to proteomics data, comparing and understanding their differences easy. The prolfqua package integrates essential steps of the mass spectrometry-based differential expression analysis workflow: quality control, data normalization, protein aggregation, statistical modeling, hypothesis testing, and sample size estimation. The package makes integrating new data formats easy. It can be used to model simple experimental designs with a single explanatory variable and complex experiments with multiple factors and hypothesis testing. The implemented methods allow sensitive and specific differential expression analysis. Furthermore, the package implements benchmark functionality that can help to compare data acquisition, data preprocessing, or data modeling methods using a gold standard data set. The application programmer interface of prolfqua strives to be clear, predictable, discoverable, and consistent to make proteomics data analysis application development easy and exciting. Finally, the prolfqua R-package is available on GitHub https://github.com/fgcz/prolfqua, distributed under the MIT license. It runs on all platforms supported by the R free software environment for statistical computing and graphics.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Proteínas/análisis , Modelos Estadísticos , Espectrometría de Masas/métodos
3.
EMBO Rep ; 22(6): e52626, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009726

RESUMEN

Proteomics research infrastructures and core facilities within the Core for Life alliance advocate for community policies for quality control to ensure high standards in proteomics services.


Asunto(s)
Proteómica , Espectrometría de Masas
4.
Appl Environ Microbiol ; 88(4): e0240621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910565

RESUMEN

Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some "superdormant" spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. IMPORTANCE Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.


Asunto(s)
Bacillus , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica , Esporas Bacterianas
5.
Mol Cell Proteomics ; 19(4): 690-700, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32107283

RESUMEN

Anal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy.


Asunto(s)
Neoplasias del Ano/clasificación , Neoplasias del Ano/genética , Carcinoma de Células Escamosas/clasificación , Carcinoma de Células Escamosas/genética , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias del Ano/inmunología , Neoplasias del Ano/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Adhesión Celular/genética , Proliferación Celular/genética , Estudios de Cohortes , Femenino , Redes Reguladoras de Genes , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Secuenciación del Exoma
6.
Proc Natl Acad Sci U S A ; 116(39): 19380-19385, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501337

RESUMEN

Food and diet were class markers in 19th-century Ireland, which became evident as nearly 1 million people, primarily the poor and destitute, died as a consequence of the notorious Great Famine of 1845 to 1852. Famine took hold after a blight (Phytophthora infestans) destroyed virtually the only means of subsistence-the potato crop-for a significant proportion of the population. This study seeks to elucidate the variability of diet in mid-19th-century Ireland through microparticle and proteomic analysis of human dental calculus samples (n = 42) from victims of the famine. The samples derive from remains of people who died between August 1847 and March 1851 while receiving poor relief as inmates in the union workhouse in the city of Kilkenny (52°39' N, -7°15' W). The results corroborate the historical accounts of food provisions before and during the famine, with evidence of corn (maize), potato, and cereal starch granules from the microparticle analysis and milk protein from the proteomic analysis. Unexpectedly, there is also evidence of egg protein-a food source generally reserved only for export and the better-off social classes-which highlights the variability of the prefamine experience for those who died. Through historical contextualization, this study shows how the notoriously monotonous potato diet of the poor was opportunistically supplemented by other foodstuffs. While the Great Irish Famine was one of the worst subsistence crises in history, it was foremost a social disaster induced by the lack of access to food and not the lack of food availability.


Asunto(s)
Cálculos Dentales/química , Dieta/historia , Hambruna/historia , Pobreza/historia , Adolescente , Adulto , Cálculos Dentales/historia , Carbohidratos de la Dieta/análisis , Carbohidratos de la Dieta/historia , Proteínas en la Dieta/análisis , Proteínas en la Dieta/historia , Femenino , Fósiles , Historia del Siglo XIX , Humanos , Irlanda/epidemiología , Masculino , Persona de Mediana Edad , Proteómica , Adulto Joven
7.
Chimia (Aarau) ; 76(1-2): 73-80, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38069752

RESUMEN

Mass spectrometry is a powerful tool in the hand of life science researchers, who constantly develop and apply new methods for the investigation of biomolecules, such as proteins, peptides, metabolites, lipids, and glycans. In this review, we will discuss the importance of mass spectrometry for the life science sector, with a special focus on the most relevant current applications in the field of proteomics. Moreover, we will comment on the factors that research groups should consider when setting up a mass spectrometry laboratory, and on the fundamental role played by academic core facilities and industrial service providers.

8.
J Hepatol ; 73(3): 628-639, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32205193

RESUMEN

BACKGROUND & AIMS: Paneth cells (PCs) synthesize and secrete antimicrobial peptides that are key mediators of host-microbe interactions, establishing a balance between intestinal microflora and enteric pathogens. We observed that their number increases in experimental portal hypertension and aimed to investigate the mechanisms by which these cells can contribute to the regulation of portal pressure. METHODS: We first treated Math1Lox/LoxVilcreERT2 mice with tamoxifen to induce the complete depletion of intestinal PCs. Subsequently, we performed partial portal vein or bile duct ligation. We then studied the effects of these interventions on hemodynamic parameters, proliferation of blood vessels and the expression of genes regulating angiogenesis. Intestinal organoids were cultured and exposed to different microbial products to study the composition of their secreted products (by proteomics) and their effects on the proliferation and tube formation of endothelial cells (ECs). In vivo confocal laser endomicroscopy was used to confirm the findings on blood vessel proliferation. RESULTS: Portal hypertension was significantly attenuated in PC-depleted mice compared to control mice and was associated with a decrease in portosystemic shunts. Depletion of PCs also resulted in a significantly decreased density of blood vessels in the intestinal wall and mesentery. Furthermore, we observed reduced expression of intestinal genes regulating angiogenesis in Paneth cell depleted mice using arrays and next generation sequencing. Tube formation and wound healing responses were significantly decreased in ECs treated with conditioned media from PC-depleted intestinal organoids exposed to intestinal microbiota-derived products. Proteomic analysis of conditioned media in the presence of PCs revealed an increase in factors regulating angiogenesis and additional metabolic processes. In vivo endomicroscopy showed decreased vascular proliferation in the absence of PCs. CONCLUSIONS: These results suggest that in response to intestinal flora and microbiota-derived factors, PCs secrete not only antimicrobial peptides, but also pro-angiogenic signaling molecules, thereby promoting intestinal and mesenteric angiogenesis and regulating portal hypertension. LAY SUMMARY: Paneth cells are present in the lining of the small intestine. They prevent the passage of bacteria from the intestine into the blood circulation by secreting substances to fight bacteria. In this paper, we discovered that these substances not only act against bacteria, but also increase the quantity of blood vessels in the intestine and blood pressure in the portal vein. This is important, because high blood pressure in the portal vein may result in several complications which could be targeted with novel approaches.


Asunto(s)
Infecciones por Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Hipertensión Portal/metabolismo , Hipertensión Portal/microbiología , Neovascularización Patológica/metabolismo , Células de Paneth/metabolismo , Animales , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/microbiología , Células de Paneth/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteoma , Proteómica/métodos , Tamoxifeno/farmacología
9.
J Clin Periodontol ; 47(11): 1304-1316, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32777086

RESUMEN

AIM: This study aimed to characterize the salivary proteome during the induction and resolution of gingival inflammation in the course of human experimental gingivitis (EG), and to cluster the proteomic profiles based on the clinically defined "slow" and "fast" response patterns. MATERIALS AND METHODS: A total of 50 unstimulated whole saliva were obtained from the EG model which was induced over 21 days (days 0, 7, 14 and 21), followed by a two-week resolution phase (day 35). Label-free quantitative proteomics using liquid chromatography-tandem mass spectrometry was applied. Regulated proteins were subject to Gene Ontology enrichment analysis. RESULTS: A total of 804 human proteins were quantified by ≥ 2 peptides. Principal component analysis depicted significant differences between "fast" and "slow" responders. Despite gingival and plaque scores being similar at baseline among the two groups, "fast" responders presented with 48 proteins that were at > 4-fold higher levels than "slow" responders. These up-regulated proteins showed enrichment in "antigen presentation" and "proteolysis." CONCLUSIONS: Together, these findings highlight the utility of integrative systems-level quantitative proteomic approaches to unravel the molecular basis of "salivary proteotypes" associated with gingivitis dubbed as "fast" and "slow" responders. Hence, these differential responses may help prognosticate individual susceptibility to gingival inflammation.


Asunto(s)
Gingivitis , Proteómica , Humanos , Índice Periodontal , Proteoma , Saliva
10.
PLoS Genet ; 13(1): e1006592, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28135265

RESUMEN

Density-Enhanced Phosphatase-1 (DEP-1) de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover, dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans ß-integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable ß-integrin mutant pat-3(Y792F) partially suppresses the hyperactive EGFR signaling phenotype caused by loss of dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the ß-integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the αß-integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through αß-integrin activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Receptores ErbB/metabolismo , Cadenas beta de Integrinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/genética , Mutación , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética
11.
J Autoimmun ; 105: 102309, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31402200

RESUMEN

IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and a major cause of chronic kidney disease and failure. IgAN is driven by an autoimmune reaction against galactose-deficient IgA1 that results in the generation of autoantibodies and large IgG-IgA immune complexes. Immune complexes accumulate in the glomerular mesangium causing chronic inflammation and renal scarring. A significant proportion of IgAN patients develop end-stage kidney disease and require dialysis or transplantation. Currently, there are no approved specific therapies that can ameliorate the systemic autoimmune reaction in IgAN and no biomarkers that can predict renal inflammation and scarring. In this study, we used shotgun LC-MS/MS proteomics to compare small volumes of urine from healthy subjects and IgAN patients. We identified multiple urine proteins with unknown renal or IgAN function. Our attention was captured by the increase of phosphatidylethanolamine binding protein-4 (PEBP4) in IgAN urine. The function of PEBP4 in IgAN or renal disease is unknown. Increased levels of urine and serum PEBP4 were subsequently validated in different cohorts of IgAN patients and PEBP4 was linked to declining kidney function in IgAN. Strong PEBP4 staining was sporadically seen in IgAN kidney biopsies, colocalising with IgA in glomeruli and in the lumen of kidney tubules. In a small number of IgAN biopsies, PEBP4 colocalised with IgA and CD19 while the increased excretion of PEBP4 in IgAN urine was accompanied by increased excretion of classic B-cell factors BAFF, BCMA and TACI as well as IgA and IgG. PEBP4 is a new IgAN-related protein with unknown function and a likely renal disease marker in urine and serum.


Asunto(s)
Linfocitos B/inmunología , Glomerulonefritis por IGA/inmunología , Inmunoglobulina A/inmunología , Riñón/inmunología , Proteínas de Unión a Fosfatidiletanolamina/inmunología , Adulto , Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/inmunología , Linfocitos B/metabolismo , Biomarcadores/metabolismo , Biopsia , Estudios de Casos y Controles , Femenino , Galactosa/inmunología , Galactosa/metabolismo , Mesangio Glomerular/inmunología , Mesangio Glomerular/metabolismo , Glomerulonefritis por IGA/metabolismo , Humanos , Riñón/metabolismo , Fallo Renal Crónico/inmunología , Fallo Renal Crónico/metabolismo , Masculino
12.
Future Oncol ; 15(30): 3483-3490, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31580166

RESUMEN

Aim: Differences in metabolism among breast cancer subtypes suggest that metabolism plays an important role in this disease. Flux balance analysis is used to explore these differences as well as drug response. Materials & methods: Proteomics data from breast tumors were obtained by mass-spectrometry. Flux balance analysis was performed to study metabolic networks. Flux activities from metabolic pathways were calculated and used to build prognostic models. Results: Flux activities of vitamin A, tetrahydrobiopterin and ß-alanine metabolism pathways split our population into low- and high-risk patients. Additionally, flux activities of glycolysis and glutamate metabolism split triple negative tumors into low- and high-risk groups. Conclusion: Flux activities summarize flux balance analysis data and can be associated with prognosis in cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Biología Computacional/métodos , Recurrencia Local de Neoplasia/metabolismo , Proteoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Pronóstico , Factores de Riesgo , Tasa de Supervivencia
13.
Mol Cell Proteomics ; 16(3): 407-427, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28062797

RESUMEN

Targeted proteomic methods can accelerate the verification of multiple tumor marker candidates in large series of patient samples. We utilized the targeted approach known as selected/multiple reaction monitoring (S/MRM) to verify potential protein markers of colorectal adenoma identified by our group in previous transcriptomic and quantitative shotgun proteomic studies of a large cohort of precancerous colorectal lesions. We developed SRM assays to reproducibly detect and quantify 25 (62.5%) of the 40 selected proteins in an independent series of precancerous and cancerous tissue samples (19 adenoma/normal mucosa pairs; 17 adenocarcinoma/normal mucosa pairs). Twenty-three proteins were significantly up-regulated (n = 17) or downregulated (n = 6) in adenomas and/or adenocarcinomas, as compared with normal mucosa (linear fold changes ≥ ±1.3, adjusted p value <0.05). Most changes were observed in both tumor types (up-regulation of ANP32A, ANXA3, SORD, LDHA, LCN2, NCL, S100A11, SERPINB5, CDV3, OLFM4, and REG4; downregulation of ARF6 and PGM5), and a five-protein biomarker signature distinguished neoplastic tissue from normal mucosa with a maximum area under the receiver operating curve greater than 0.83. Other changes were specific for adenomas (PPA1 and PPA2 up-regulation; KCTD12 downregulation) or adenocarcinoma (ANP32B, G6PD, RCN1, and SET up-regulation; downregulated AKR1B1, APEX1, and PPA1). Some changes significantly correlated with a few patient- or tumor-related phenotypes. Twenty-two (96%) of the 23 proteins have a potential to be released from the tumors into the bloodstream, and their detectability in plasma has been previously reported. The proteins identified in this study expand the pool of biomarker candidates that can be used to develop a standardized precolonoscopy blood test for the early detection of colorectal tumors.


Asunto(s)
Adenoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Proteómica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Cromatografía Liquida , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Espectrometría de Masas en Tándem
14.
Mol Cell Proteomics ; 16(5): 840-854, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28292943

RESUMEN

The 26S proteasome is the macromolecular machine responsible for ATP/ubiquitin dependent degradation. As aberration in proteasomal degradation has been implicated in many human diseases, structural analysis of the human 26S proteasome complex is essential to advance our understanding of its action and regulation mechanisms. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for elucidating structural topologies of large protein assemblies, with its unique capability of studying protein complexes in cells. To facilitate the identification of cross-linked peptides, we have previously developed a robust amine reactive sulfoxide-containing MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). To better understand the structure and regulation of the human 26S proteasome, we have established new DSSO-based in vivo and in vitro XL-MS workflows by coupling with HB-tag based affinity purification to comprehensively examine protein-protein interactions within the 26S proteasome. In total, we have identified 447 unique lysine-to-lysine linkages delineating 67 interprotein and 26 intraprotein interactions, representing the largest cross-link dataset for proteasome complexes. In combination with EM maps and computational modeling, the architecture of the 26S proteasome was determined to infer its structural dynamics. In particular, three proteasome subunits Rpn1, Rpn6, and Rpt6 displayed multiple conformations that have not been previously reported. Additionally, cross-links between proteasome subunits and 15 proteasome interacting proteins including 9 known and 6 novel ones have been determined to demonstrate their physical interactions at the amino acid level. Our results have provided new insights on the dynamics of the 26S human proteasome and the methodologies presented here can be applied to study other protein complexes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular , Humanos , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
15.
Plant J ; 90(2): 293-303, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28182313

RESUMEN

Amino-terminal tails of histones are targets for diverse post-translational modifications whose combinatorial action may constitute a code that will be read and interpreted by cellular proteins to define particular transcriptional states. Here, we describe monomethylation of histone H3 lysine 23 (H3K23me1) as a histone modification not previously described in plants. H3K23me1 is an evolutionarily conserved mark in diverse species of flowering plants. Chromatin immunoprecipitation followed by high-throughput sequencing in Arabidopsis thaliana showed that H3K23me1 was highly enriched in pericentromeric regions and depleted from chromosome arms. In transposable elements it co-localized with CG, CHG and CHH DNA methylation as well as with the heterochromatic histone mark H3K9me2. Transposable elements are often rich in H3K23me1 but different families vary in their enrichment: LTR-Gypsy elements are most enriched and RC/Helitron elements are least enriched. The histone methyltransferase KRYPTONITE and normal DNA methylation were required for normal levels of H3K23me1 on transposable elements. Immunostaining experiments confirmed the pericentromeric localization and also showed mild enrichment in less condensed regions. Accordingly, gene bodies of protein-coding genes had intermediate H3K23me1 levels, which coexisted with CG DNA methylation. Enrichment of H3K23me1 along gene bodies did not correlate with transcription levels. Together, this work establishes H3K23me1 as a so far undescribed component of the plant histone code.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN/fisiología , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Heterocromatina/genética , Histonas/genética , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología
16.
Plant J ; 88(3): 425-436, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27402088

RESUMEN

Histones are abundant cellular proteins but, if not incorporated into chromatin, they are usually bound by histone chaperones. Here, we identify Arabidopsis NASP as a chaperone for histones H3.1 and H3.3. NASP interacts in vitro with monomeric H3.1 and H3.3 as well as with histone H3.1-H4 and H3.3-H4 dimers. However, NASP does not bind to monomeric H4. NASP shifts the equilibrium between histone dimers and tetramers towards tetramers but does not interact with tetramers in vitro. Arabidopsis NASP promotes [H3-H4]2 tetrasome formation, possibly by providing preassembled histone tetramers. However, NASP does not promote disassembly of in vitro preassembled tetrasomes. In contrast to its mammalian homolog, Arabidopsis NASP is a predominantly nuclear protein. In vivo, NASP binds mainly monomeric H3.1 and H3.3. Pulldown experiments indicated that NASP may also interact with the histone chaperone MSI1 and a HSC70 heat shock protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Chaperonas Moleculares/genética , Nucleosomas/metabolismo
17.
EMBO J ; 32(14): 2073-85, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23778966

RESUMEN

Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1-MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética
18.
Anal Chem ; 89(3): 1523-1530, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28035797

RESUMEN

Protein adenosine diphosphate (ADP)-ribosylation is a physiologically and pathologically important post-translational modification. Recent technological advances have improved analysis of this complex modification and have led to the discovery of hundreds of ADP-ribosylated proteins in both cultured cells and mouse tissues. Nevertheless, accurate assignment of the ADP-ribose acceptor site(s) within the modified proteins identified has remained a challenging task. This is mainly due to poor fragmentation of modified peptides. Here, using an Orbitrap Fusion Tribrid mass spectrometer, we present an optimized methodology that not only drastically improves the overall localization scores for ADP-ribosylation acceptor sites but also boosts ADP-ribosylated peptide identifications. First, we systematically compared the efficacy of higher-energy collision dissociation (HCD), electron-transfer dissociation with supplemental collisional activation (ETcaD), and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation methods when determining ADP-ribose acceptor sites within complex cellular samples. We then tested the combination of HCD and EThcD fragmentation, which were employed in a product-dependent manner, and the unique fragmentation properties of the ADP-ribose moiety were used to trigger targeted fragmentation of only the modified peptides. The best results were obtained with a workflow that included initial fast, high-energy HCD (Orbitrap, FT) scans, which produced intense ADP-ribose fragmentation ions. These potentially ADP-ribosylated precursors were then selected and analyzed via subsequent high-resolution HCD and EThcD fragmentation. Using these resulting high-quality spectra, we identified a xxxxxxKSxxxxx modification motif where lysine can serve as an ADP-ribose acceptor site. Due to the appearance of serine within this motif and its close presence to the lysine, further analysis revealed that serine serves as a new ADP-ribose acceptor site across the proteome.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Péptidos/análisis , Proteínas/metabolismo , Espectrometría de Masas en Tándem , Adenosina Difosfato Ribosa/química , Cromatografía Líquida de Alta Presión , Transporte de Electrón , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional
19.
Plant Physiol ; 170(3): 1566-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26764380

RESUMEN

In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription.


Asunto(s)
Código de Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Lisina/genética , Oryza/genética , Oryza/metabolismo , Picea/genética , Picea/metabolismo , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/genética , Nicotiana/metabolismo , Sitio de Iniciación de la Transcripción
20.
Plant Cell ; 26(5): 1913-1924, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876255

RESUMEN

Cassava (Manihot esculenta) is the most important root crop in the tropics, but rapid postharvest physiological deterioration (PPD) of the root is a major constraint to commercial cassava production. We established a reliable method for image-based PPD symptom quantification and used label-free quantitative proteomics to generate an extensive cassava root and PPD proteome. Over 2600 unique proteins were identified in the cassava root, and nearly 300 proteins showed significant abundance regulation during PPD. We identified protein abundance modulation in pathways associated with oxidative stress, phenylpropanoid biosynthesis (including scopoletin), the glutathione cycle, fatty acid α-oxidation, folate transformation, and the sulfate reduction II pathway. Increasing protein abundances and enzymatic activities of glutathione-associated enzymes, including glutathione reductases, glutaredoxins, and glutathione S-transferases, indicated a key role for ascorbate/glutathione cycles. Based on combined proteomics data, enzymatic activities, and lipid peroxidation assays, we identified glutathione peroxidase as a candidate for reducing PPD. Transgenic cassava overexpressing a cytosolic glutathione peroxidase in storage roots showed delayed PPD and reduced lipid peroxidation as well as decreased H2O2 accumulation. Quantitative proteomics data from ethene and phenylpropanoid pathways indicate additional gene candidates to further delay PPD. Cassava root proteomics data are available at www.pep2pro.ethz.ch for easy access and comparison with other proteomics data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA