Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lab Invest ; 103(4): 100051, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870285

RESUMEN

Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.


Asunto(s)
Vías Olfatorias , Canales de Potencial de Receptor Transitorio , Animales , Ratones , COVID-19/complicaciones , Ratones Noqueados , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Vías Olfatorias/metabolismo , Olfato/genética , Olfato/fisiología
2.
Infect Immun ; 90(2): e0062221, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34978928

RESUMEN

We established an infant mouse model for colonization and transmission by nonencapsulated Streptococcus pneumoniae (NESp) strains to gain important information about its virulence among children. Invasive pneumococcal diseases have decreased dramatically since the worldwide introduction of pneumococcal capsular polysaccharide vaccines. Increasing prevalence of nonvaccine serotypes, including NESp, has been highlighted as a challenge in treatment strategy, but the virulence of NESp is not well understood. Protective strategies against NESp colonization and transmission between children require particularly urgent evaluation. NESp lacks capsules, a major virulence factor of pneumococci, but can cause a variety of infections in children and older people. PspK, a specific surface protein of NESp, is a key factor in establishing nasal colonization. In our infant mouse model for colonization and transmission by NESp strains, NESp could establish stable nasal colonization at the same level as encapsulated serotype 6A in infant mice and could be transmitted between littermates. Transmission was promoted by NESp surface virulence factor PspK and influenza virus coinfection. However, PspK deletion mutants lost the ability to colonize and transmit to new hosts. Promotion of NESp transmission by influenza was due to increased susceptibility of the new hosts. PspK was a key factor not only in establishment of nasal colonization but also in transmission to new hosts. PspK may be targeted as a new candidate vaccine for NESp infection in children.


Asunto(s)
Coinfección , Virus de la Influenza A , Infecciones Neumocócicas , Anciano , Animales , Darbepoetina alfa/metabolismo , Modelos Animales de Enfermedad , Humanos , Virus de la Influenza A/genética , Ratones , Vacunas Neumococicas , Streptococcus pneumoniae , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
J Infect Chemother ; 28(11): 1452-1458, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35835387

RESUMEN

INTRODUCTION: Since the introduction of pneumococcal conjugate vaccine, there have been warnings of an increase in infections caused by non-vaccine type of Streptococcus pneumoniae strains. Among them, nonencapsulated Streptococcus pneumoniae (NESp) has been reported to cause invasive infections, especially in children and the elderly. Due to low virulence, however, basic experimental reports on invasive infections are limited. METHODS: We applied a liquid-agar method to establish a mouse model of invasive NESp infection. Mice were intratracheally administered a bacterial suspension including agar. With this technique, we investigated the pathogenicity of NESp and the effect of Pneumococcal surface protein K (PspK), a specific surface protein antigen of NESp. NESp wild-type strain (MNZ11) and NESp pspK-deleted mutant strain (MNZ1131) were used in this study. The survival rate, number of bacteria, cytokine/chemokine levels in the bronchoalveolar lavage fluid, and histology of the lung tissue were evaluated. RESULTS: Mice that were intratracheally administered MNZ11 developed lethal pneumonia with bacteremia within 48 h. Conversely, MNZ1131 showed predominantly low lethality without significant pro-inflammatory cytokine production. NESp was found to cause severe pneumonia and bacteremia upon reaching the lower respiratory tract, and PspK was a critical factor of NESp for developing invasive infections. CONCLUSIONS: The current study demonstrated the ability of NESp to develop invasive diseases, especially in connection with PspK by use of a mouse pneumonia model.


Asunto(s)
Bacteriemia , Infecciones Neumocócicas , Neumonía Neumocócica , Agar/metabolismo , Animales , Citocinas/metabolismo , Ratones , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae , Virulencia
4.
Exp Anim ; 73(1): 50-60, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37532523

RESUMEN

Streptococcus pneumoniae can cause mortality in infant, elderly, and immunocompromised individuals owing to invasion of bacteria to the lungs, the brain, and the blood. In building strategies against invasive infections, it is important to achieve greater understanding of how the pneumococci are able to survive in the host. Toll-like receptors (TLRs), critically important components in the innate immune system, have roles in various stages of the development of infectious diseases. Endosomal TLRs recognize nucleic acids of the pathogen, but the impact on the pneumococcal diseases of immune responses from signaling them remains unclear. To investigate their role in nasal colonization and invasive disease with/without influenza co-infection, we established a mouse model of invasive pneumococcal diseases directly developing from nasal colonization. TLR9 KO mice had bacteremia more frequently than wildtype in the pneumococcal mono-infection model, while the occurrence of bacteremia was higher among TLR3 KO mice after infection with influenza in advance of pneumococcal inoculation. All TLR KO strains showed poorer survival than wildtype after the mice had bacteremia. The specific and protective role of TLR3 and TLR9 was shown in developing bacteremia with/without influenza co-infection respectively, and all nucleic sensing TLRs would contribute equally to protecting sepsis after bacteremia.


Asunto(s)
Bacteriemia , Coinfección , Gripe Humana , Ácidos Nucleicos , Infecciones Neumocócicas , Humanos , Lactante , Animales , Ratones , Anciano , Gripe Humana/complicaciones , Receptor Toll-Like 3/genética , Receptor Toll-Like 9/genética , Streptococcus pneumoniae , Bacteriemia/microbiología , Receptores Toll-Like
5.
Front Cell Infect Microbiol ; 13: 1059603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033488

RESUMEN

Introduction: Streptococcus pneumoniae (S. pneumoniae) is one of the most widespread pathogens in the world and one of the largest infectious causes of infant mortality. Although current vaccines have various benefits, antibiotic resistance and the inability to vaccinate infants less than one year old demands the development of new protective strategies. One strategy, 'maternal immunization', is to protect infants by passive immunity from an immunized mother, although its mechanism is still not fully understood. Materials and methods: The current study aimed to acquire immunity against S. pneumoniae in infants by maternal immunization with pneumococcal common antigen, pneumococcal surface protein A (PspA). Four-week-old female mice were immunized with recombinant PspA intranasally twice a week for three weeks. Females were mated with age-matched males after immunization, and delivered offspring. Results: The week-old offspring derived from and fostered by immunized mothers had more anti-PspA-specific antibody producing cells in the spleen than those derived from sham-immunized mothers. The offspring were raised up to four weeks old and were subcutaneously stimulated with recombinant PspA. The levels of anti-PspA IgG in sera after stimulation were significantly higher in the offspring derived from the immunized mothers and the induced specific antibody to PspA showed protective efficacy against systemic pneumococcal infection. Discussion: Maternal immunization is suggested to be able to provide a sustained immune memory to offspring. The current study would be a milestone in the field of maternal immunization toward a universal pneumococcal vaccine.


Asunto(s)
Memoria Inmunológica , Infecciones Neumocócicas , Masculino , Femenino , Animales , Ratones , Inmunoglobulina G , Infecciones Neumocócicas/prevención & control , Proteínas Bacterianas , Inmunización , Vacunación , Streptococcus pneumoniae , Antígenos Bacterianos , Vacunas Neumococicas , Anticuerpos Antibacterianos , Ratones Endogámicos BALB C
6.
Front Cell Infect Microbiol ; 11: 651495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869082

RESUMEN

Streptococcus pneumoniae, one of the most common commensal pathogens among children, is spread by close contact in daycare centers or within a family. Host innate immune responses and bacterial virulence factors promote pneumococcal transmission. However, investigations into the effects of environmental factors on transmission have been limited. Passive smoking, a great concern for children's health, has been reported to exacerbate pneumococcal diseases. Here, we describe the effect of cigarette smoke exposure on an infant mouse model of pneumococcal transmission. Our findings reveal that the effect of cigarette smoke exposure significantly promotes pneumococcal transmission by enhancing bacterial shedding from the colonized host and by increasing susceptibility to pneumococcal colonization in the new host, both of which are critical steps of transmission. Local inflammation, followed by mucosal changes (such as mucus hypersecretion and disruption of the mucosal barrier), are important underlying mechanisms for promotion of transmission by smoke exposure. These effects were attributable to the constituents of cigarette smoke rather than smoke itself. These findings provide the first experimental evidence of the impact of environmental factors on pneumococcal transmission and the mechanism of pathogenesis.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Modelos Animales de Enfermedad , Ratones , Humo , Fumar
7.
Front Pharmacol ; 12: 640514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421583

RESUMEN

Despite tremendous success of pneumococcal conjugated vaccine and antimicrobial treatment by amoxicillin, acute otitis media (AOM) still remains as a great medical concern. Failure of antimicrobial treatment includes several factors. The middle ear cavity is surrounded by bone tissue, which makes it difficult to maintain sufficient concentration of antibiotics. Tympanic membrane of AOM patients thickens and actually becomes a barrier for topical therapy. This review discusses novel antimicrobial treatment strategies based on drug delivery systems (DDS) for AOM. To deliver drugs enough to kill the pathogenic bacteria without systemic side effects, the development of new antimicrobial treatment strategy applying innovative drug DDS has been expected. The sustained-release DDS can achieve sufficient time for antimicrobial concentrations to exceed minimum inhibitory concentration (MIC) for time-dependent antibiotics as well as enough maximum concentration for dose-dependent antibiotics to eradicate causative pathogens in the middle ear. The development of trans-tympanic membranes of DDS, such as hydrogels with chemical permeation enhancers (CPEs), is another attractive strategy. Phage is a promising strategy for developing DDS-based therapies. The DDS formulations enable antimicrobial treatment of AOM by a single dose and thus, an attractive future antimicrobial treatment for AOM.

8.
Front Immunol ; 12: 732029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804016

RESUMEN

Transient receptor potential (TRP) channels, neuronal stimulations widely known to be associated with thermal responses, pain induction, and osmoregulation, have been shown in recent studies to have underlying mechanisms associated with inflammatory responses. The role of TRP channels on inflammatory milieu during bacterial infections has been widely demonstrated. It may vary among types of channels/pathogens, however, and it is not known how TRP channels function during pneumococcal infections. Streptococcus pneumoniae can cause severe infections such as pneumonia, bacteremia, and meningitis, with systemic inflammatory responses. This study examines the role of TRP channels (TRPV1 and TRPV4) for pneumococcal nasal colonization and subsequent development of invasive pneumococcal disease in a mouse model. Both TRPV1 and TRPV4 channels were shown to be related to regulation of the development of pneumococcal diseases. In particular, the influx of neutrophils (polymorphonuclear cells) in the nasal cavity and the bactericidal activity were significantly suppressed among TRPV4 knockout mice. This may lead to severe pneumococcal pneumonia, resulting in dissemination of the bacteria to various organs and causing high mortality during influenza virus coinfection. Regulating host immune responses by TRP channels could be a novel strategy against pathogenic microorganisms causing strong local/systemic inflammation.


Asunto(s)
Mucosa Nasal/metabolismo , Infecciones Neumocócicas/metabolismo , Streptococcus pneumoniae/patogenicidad , Canales Catiónicos TRPV/metabolismo , Animales , Coinfección , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Mediadores de Inflamación/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Nasal/inmunología , Mucosa Nasal/microbiología , Mucosa Nasal/virología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/microbiología , Fagocitosis , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Transducción de Señal , Streptococcus pneumoniae/inmunología , Canales Catiónicos TRPV/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA