Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 8(1): 815, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339751

RESUMEN

Jumonji (JmjC) domain proteins are known regulators of gene expression and chromatin organization by way of histone demethylation. Chromatin modification and remodeling provides a means to modulate the activity of large numbers of genes, but the importance of this class of predicted histone-modifying enzymes for different aspects of post-developmental processes remains poorly understood. Here we test the function of all 11 non-lethal members in the regulation of circadian rhythms and sleep. We find loss of every Drosophila JmjC gene affects different aspects of circadian behavior and sleep in a specific manner. Together these findings suggest that the majority of JmjC proteins function as regulators of behavior, rather than controlling essential developmental programs.


Asunto(s)
Ritmo Circadiano , Drosophila/fisiología , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Sueño , Animales , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
2.
Neuropsychopharmacology ; 41(6): 1439-46, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26576740

RESUMEN

Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Neurofarmacología/métodos , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/fisiopatología , Investigación Biomédica/métodos , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Encefalopatías/tratamiento farmacológico , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/fisiopatología , Trastornos Mentales/tratamiento farmacológico , Psicofarmacología/métodos , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/fisiopatología
3.
Dev Cell ; 29(6): 701-15, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24960694

RESUMEN

The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases.


Asunto(s)
Espinas Dendríticas/fisiología , Proteínas Activadoras de GTPasa/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Proto-Oncogénicas c-bcr/fisiología , Receptores de la Familia Eph/metabolismo , Sinapsis/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Western Blotting , Electrofisiología , Endocitosis , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Técnicas para Inmunoenzimas , Inmunoprecipitación , Ratones , Ratones Noqueados , Neuritas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T
4.
Mol Biol Cell ; 24(24): 3857-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24152735

RESUMEN

Cell polarization is essential for many biological processes, including directed cell migration, and loss of polarity contributes to pathological conditions such as cancer. The Par complex (Par3, Par6, and PKCζ) controls cell polarity in part by recruiting the Rac-specific guanine nucleotide exchange factor T-lymphoma invasion and metastasis 1 (Tiam1) to specialized cellular sites, where Tiam1 promotes local Rac1 activation and cytoskeletal remodeling. However, the mechanisms that restrict Par-Tiam1 complex activity to the leading edge to maintain cell polarity during migration remain unclear. We identify the Rac-specific GTPase-activating protein (GAP) breakpoint cluster region protein (Bcr) as a novel regulator of the Par-Tiam1 complex. We show that Bcr interacts with members of the Par complex and inhibits both Rac1 and PKCζ signaling. Loss of Bcr results in faster, more random migration and striking polarity defects in astrocytes. These polarity defects are rescued by reducing PKCζ activity or by expressing full-length Bcr, but not an N-terminal deletion mutant or the homologous Rac-GAP, Abr, both of which fail to associate with the Par complex. These results demonstrate that Bcr is an integral member of the Par-Tiam1 complex that controls polarized cell migration by locally restricting both Rac1 and PKCζ function.


Asunto(s)
Astrocitos/citología , Movimiento Celular/genética , Polaridad Celular/genética , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Astrocitos/metabolismo , Moléculas de Adhesión Celular , Proteínas de Ciclo Celular , Polaridad Celular/fisiología , Células Cultivadas , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Ratones Noqueados , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/biosíntesis , Neuropéptidos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Transducción de Señal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/biosíntesis , Proteína de Unión al GTP rac1/metabolismo
5.
PLoS One ; 8(6): e67015, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825607

RESUMEN

The assembly of neuronal circuits during development requires the precise navigation of axons, which is controlled by attractive and repulsive guidance cues. In the developing spinal cord, ephrinB3 functions as a short-range repulsive cue that prevents EphA4 receptor-expressing corticospinal tract and spinal interneuron axons from crossing the midline, ensuring proper formation of locomotor circuits. Here we report that the small GTPase RhoA, a key regulator of cytoskeletal dynamics, is also required for ephrinB3/EphA4-dependent locomotor circuit formation. Deletion of RhoA from neural progenitor cells results in mice that exhibit a rabbit-like hopping gait, which phenocopies mice lacking ephrinB3 or EphA4. Consistent with this locomotor defect, we found that corticospinal tract axons and spinal interneuron projections from RhoA-deficient mice aberrantly cross the spinal cord midline. Furthermore, we determined that loss of RhoA blocks ephrinB3-induced growth cone collapse of cortical axons and disrupts ephrinB3 expression at the spinal cord midline. Collectively, our results demonstrate that RhoA is essential for the ephrinB3/EphA4-dependent assembly of cortical and spinal motor circuits that control normal locomotor behavior.


Asunto(s)
Locomoción , Red Nerviosa/enzimología , Red Nerviosa/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Efrina-B3/metabolismo , Técnicas de Inactivación de Genes , Conos de Crecimiento/metabolismo , Ratones , Datos de Secuencia Molecular , Red Nerviosa/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptor EphA4/metabolismo , Médula Espinal/citología , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/deficiencia , Proteína de Unión al GTP rhoA/genética
6.
Mol Biol Cell ; 24(4): 474-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23283986

RESUMEN

The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvß8 is a major driver of GBM cell invasion. ß8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing ß8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. ß8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvß8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvß8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvß8 integrin-RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Integrinas/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Adhesión Celular/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Integrinas/antagonistas & inhibidores , Integrinas/metabolismo , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Trasplante de Neoplasias , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Técnicas Estereotáxicas , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA