Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Vis ; 27: 151-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907370

RESUMEN

PURPOSE: Recent reports linking HDAC6 to mitochondrial turnover and neurodegeneration led us to hypothesize that an inhibitor such as Vorinostat (suberoylanilide hydroxamic acid, SAHA) may reduce mitochondrial damage found in retinitis pigmentosa (RP), a progressive neurodegenerative disease of the eye. Here we tested the efficacy of SAHA for its ability to protect photoreceptors in in-vitro and in-situ models of RP. As the stressor, we focused on calcium overload. Calcium is one of the main drivers of cell death, and is associated with rod loss in the rd1 mouse retina, which harbors a mutation in the Pde6b gene similar to that found in human patients suffering from autosomal recessive RP. METHOD: Murine photoreceptor cell line (661W) were exposed to agents that led to calcium stress. Cell survival and redox capacity were measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time changes in cellular metabolism were assessed using the Seahorse Biosciences XF24 analyzer, and mitochondrial fission-fusion using imaging. In-situ, neuroprotection was assessed in RPE/retina organ cultures of the rd1 mouse. SAHA effects on cell survival were compared in 661W cells with those of the specific HDAC6 inhibitor tubastatin A, and those on protein acetylation by Western blotting. RESULTS: In stressed 661W cells, SAHA was found to increase cell survival that was associated with improved mitochondrial respiration and reduced mitochondrial fission. The protective effects of SAHA were also observed on photoreceptor cell survival in whole retinal organ explants of the rd1 mouse. Even though tubastatin A was ineffective in increasing cell survival in 661W cells, HDAC6 activity was confirmed in 661W cells after SAHA treatment with protein acetylation specific for HDAC6, defined by an increase in tubulin, but not histone acetylation. CONCLUSIONS: SAHA was found to protect mitochondria from damage, and concomitantly reduced photoreceptor cell death in cell and organ cultures. The lack of activity of tubastatin A suggests that there must be an additional mechanism of action involved in the protective mechanism of SAHA that is responsible for its neuroprotection. Overall, SAHA may be a useful treatment for the prevention of photoreceptor degeneration associated with human RP. The results are discussed in the context of the effects of inhibitors that target different classes and members of the HDAC family and their effects on rod versus cone survival.


Asunto(s)
Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Retinitis Pigmentosa/tratamiento farmacológico , Vorinostat/uso terapéutico , Animales , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/prevención & control , NADH NADPH Oxidorreductasas/metabolismo , Técnicas de Cultivo de Órganos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
2.
Adv Exp Med Biol ; 854: 449-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427445

RESUMEN

One feature common to many of the pathways implicated in retinal degeneration is increased metabolic stress leading to impaired mitochondrial function. We found that exposure of cells to calcium ionophores or oxidants as metabolic stressors diminish maximal mitochondrial capacity. A library of 50,000 structurally diverse "drug-like" molecules was screened for protection against loss of calcium-induced loss of mitochondrial capacity in 661W rod-derived cells and C6 glioblastomas. Initial protective hits were then tested for protection against IBMX-induced loss of mitochondrial capacity as measured via respirometry. Molecules that protected mitochondria were then evaluated for protection of rod photoreceptor cells in retinal explants from rd1 mice. Two of the molecules attenuated loss of photoreceptor cells in the rd1 model. In the 661W cells, exposure to calcium ionophore or tert-butylhydroperoxide caused mitochondrial fragmentation that was blocked with the both compounds. Our studies have identified molecules that protect mitochondria and attenuate loss of photoreceptors in models of retinal degeneration suggesting that they could be good leads for development of therapeutic drugs for treatment of a wide variety of retinal dystrophies.


Asunto(s)
Mitocondrias/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Sustancias Protectoras/farmacología , Retinitis Pigmentosa/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Estrés Fisiológico/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Glucólisis/efectos de los fármacos , Ratones Mutantes , Mitocondrias/metabolismo , Técnicas de Cultivo de Órganos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
3.
Front Immunol ; 13: 830169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651620

RESUMEN

Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.


Asunto(s)
Neoplasias de la Mama , Neuropilina-2 , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Neuropilina-1/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Isoformas de Proteínas , Macrófagos Asociados a Tumores
4.
Cancers (Basel) ; 13(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070758

RESUMEN

Secreted frizzled-related protein 2 (SFRP2) promotes the migration/invasion of metastatic osteosarcoma (OS) cells and tube formation by endothelial cells. However, its function on T-cells is unknown. We hypothesized that blocking SFRP2 with a humanized monoclonal antibody (hSFRP2 mAb) can restore immunity by reducing CD38 and PD-1 levels, ultimately overcoming resistance to PD-1 inhibitors. Treating two metastatic murine OS cell lines in vivo, RF420 and RF577, with hSFRP2 mAb alone led to a significant reduction in the number of lung metastases, compared to IgG1 control treatment. While PD-1 mAb alone had minimal effect, hSFRP2 mAb combination with PD-1 mAb had an additive antimetastatic effect. This effect was accompanied by lower SFRP2 levels in serum, lower CD38 levels in tumor-infiltrating lymphocytes and T-cells, and lower PD-1 levels in T-cells. In vitro data confirmed that SFRP2 promotes NFATc3, CD38 and PD-1 expression in T-cells, while hSFRP2 mAb treatment counteracts these effects and increases NAD+ levels. hSFRP2 mAb treatment further rescued the suppression of T-cell proliferation by tumor cells in a co-culture model. Finally, hSFRP2 mAb induced apoptosis in RF420 and RF577 OS cells but not in T-cells. Thus, hSFRP2 mAb therapy could potentially overcome PD-1 inhibitor resistance in metastatic osteosarcoma.

5.
J Ocul Pharmacol Ther ; 37(6): 367-378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945330

RESUMEN

Purpose: Metabolic stress and associated mitochondrial dysfunction are implicated in retinal degeneration irrespective of the underlying cause. We identified seven unique chemicals from a Chembridge DiverSET screen and tested their protection against photoreceptor cell death in cell- and animal-based approaches. Methods: Calcium overload (A23187) was triggered in 661W murine photoreceptor-derived cells, and changes in redox potential and real-time changes in cellular metabolism were assessed using the MTT and Seahorse Biosciences XF assay, respectively. Cheminformatics to compare structures, and biodistribution in the living pig eye aided in selection of the lead compound. In-situ, retinal organ cultures of rd1 mouse and S334ter-line-3 rat were tested, in-vivo the light-induced retinal degeneration in albino Balb/c mice was used, assessing photoreceptor cell numbers histologically. Results: Of the seven chemicals, six were protective against A23187- and IBMX-induced loss of mitochondrial capacity, as measured by viability and respirometry in 661W cells. Cheminformatic analyses identified a unique pharmacophore with 6 physico-chemical features based on two compounds (CB11 and CB12). The protective efficacy of CB11 was further shown by reducing photoreceptor cell loss in retinal explants from two retinitis pigmentosa rodent models. Using eye drops, CB11 targeting to the pig retina was confirmed. The same eye drops decreased photoreceptor cell loss in light-stressed Balb/c mice. Conclusions: New chemicals were identified that protect from mitochondrial damage and lead to improved mitochondrial function. Using ex-vivo and in-vivo models, CB11 decreased the loss of photoreceptor cells in murine models of retinal degeneration and may be effective as treatment for different retinal dystrophies.


Asunto(s)
Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Degeneración Retiniana/complicaciones , Retinitis Pigmentosa/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Mitocondrias/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/patología
6.
J Thorac Cardiovasc Surg ; 162(2): 463-473, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32653291

RESUMEN

OBJECTIVE: Innate and acquired resistance is the principle factor limiting the efficacy of tyrosine kinase inhibitors in lung cancer. We have observed a dramatic upregulation of the cell surface co-receptor neuropilin-2b in lung cancers clinically treated with tyrosine kinase inhibitors correlating with acquired resistance. We hypothesize that neuropilin-2b plays a functional role in acquired tyrosine kinase inhibitor resistance. METHODS: Non-small cell lung cancer proliferation and survival were determined during chronic tyrosine kinase inhibitor exposure in the presence or absence of neuropilin-2b knock-down. Interactions of neuropilin-2a and neuropilin-2b isoforms with PTEN and GSK3ß were assessed by immunoprecipitation. Neuropilin-2a and neuropilin-2b mutants deleted for their cytoplasmic domains were used to identify regions responsible for neuropilin-2b-GSK3ß interaction. Because GSK3ß is known to phosphorylate and degrade PTEN, phospho-PTEN and total PTEN levels were assessed after transfection of neuropilin-2a and neuropilin-2b wild-type and mutant constructs. RESULTS: Non-small cell lung cancer cells chronically treated with gefitinib or osimertinib developed drug resistance and exhibited logarithmic growth in the presence of endothelial growth factor receptor tyrosine kinase inhibitors. However, neuropilin-2b knockdown cells remained sensitive to gefitinib. Likewise, neuropilin-2b knockdown suppressed and neuropilin-2a knockdown enhanced cellular migration. Acquired drug resistance and cell migration correlated with neuropilin-2b-dependent AKT activation with the intermediate step of GSK3ß-dependent PTEN degradation. A specific binding site for GSK3ß on the cytoplasmic domain of neuropilin-2b was identified with truncated protein constructs and computer modeling. CONCLUSIONS: Neuropilin-2b facilitates non-small cell lung cancer resistance to tyrosine kinase inhibitors, and this biological effect relates to AKT activation. Neuropilin-2b GSK3ß interactions appear to be essential for PTEN degradation and AKT activation in lung cancer cells. Disruption of the neuropilin-2b GSK3ß interaction may represent a novel treatment strategy to preserve sensitivity to tyrosine kinase inhibitors in non-small cell lung cancer.


Asunto(s)
Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neuropilina-2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Neuropilina-2/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Mol Ther Methods Clin Dev ; 9: 1-11, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29234687

RESUMEN

Complement activation plays a significant role in age-related macular degeneration (AMD) pathogenesis, and polymorphisms interfering with factor H (fH) function, a complement alternative pathway (AP) inhibitor, are associated with increased AMD risk. We have previously validated an AP inhibitor, a fusion protein consisting of a complement receptor 2 fragment linked to the inhibitory domain of fH (CR2-fH) as an efficacious treatment for choroidal neovascularization (CNV) when delivered intravenously. Here we tested an alternative approach of AAV-mediated delivery (AAV5-VMD2-CR2-fH or AAV5-VMD2-mCherry) using subretinal delivery in C57BL/6J mice. Secretion of CR2-fH was confirmed in polarized retinal pigment epithelium (RPE) cells. A safe concentration of AAV5-VMD2-CR2-fH was identified using electroretinography, optical coherence tomography (OCT), RPE morphology, and antibody profiling. One month after gene delivery, CNV was induced using argon laser photocoagulation. OCT assessment demonstrated reduced CNV with AAV5-VMD2-CR2-fH administration. Bioavailability studies revealed that gene-therapy delivered similar levels of CR2-fH to the RPE/choroid as treatment by intravenous injections, and C3a ELISA verified reduced CNV-associated ocular C3a production. These results contribute to existing data illustrating the importance of the AP of complement in CNV development and its potential role in AMD treatment. Demonstration of AAV-vector efficacy opens new avenues for the development of treatment strategies.

8.
Brain Res Dev Brain Res ; 138(2): 97-107, 2002 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-12354638

RESUMEN

In this work, the differential expression of a chemical marker, the alpha-isoform of the calcium/calmodulin-dependent protein kinase II (CaM-Kinase II alpha) and the development of the spinal cord projection were used to determine in vivo the embryonic stages at which different aspects of the phenotype of neocortical cells are specified. We first performed a quantitative, immunocytochemical study on the levels of CaM-Kinase II alpha expression in the frontal, parietal and occipital cortical areas of control adult rats. We found that the levels of expression of CaM-Kinase II alpha were larger in the frontal and parietal areas than in the occipital areas. In addition, all layer V neurons identified as projecting to the spinal cord were CaM-Kinase II alpha immunopositive. We then grafted embryonic day (E) 12 or 14 cells from the presumptive frontal or occipital cortex of donor fetuses into the frontal or occipital cortex of newborn hosts. Cortical cells grafted at E12 differentiate neurons with molecular (CaM-Kinase II alpha) and connectivity (spinal cord projection) phenotypes appropriate to the cortical area where they complete their development whereas cells taken at E14 differentiate neurons with molecular and connectivity phenotypes appropriate to their cortical locus of origin. These findings suggest that E12 progenitors destined to generate layer V neurons are multipotent. The final phenotype of their progeny depends on regionalizing signals expressed in the environment. Later in corticogenesis, committed progenitors become unable to respond to regionalizing signals and generate neurons whose phenotype is appropriate to the initial cortical position of the precursor.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Neocórtex/citología , Neocórtex/enzimología , Plasticidad Neuronal/fisiología , Neuronas/enzimología , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Trasplante de Células/fisiología , Femenino , Inmunohistoquímica , Masculino , Neocórtex/crecimiento & desarrollo , Lóbulo Occipital/citología , Lóbulo Occipital/enzimología , Lóbulo Occipital/crecimiento & desarrollo , Lóbulo Parietal/citología , Lóbulo Parietal/enzimología , Lóbulo Parietal/crecimiento & desarrollo , Corteza Prefrontal/citología , Corteza Prefrontal/enzimología , Corteza Prefrontal/crecimiento & desarrollo , Embarazo , Ratas , Ratas Wistar , Médula Espinal/embriología
9.
Cell Adh Migr ; 3(4): 383-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19855168

RESUMEN

Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.


Asunto(s)
Movimiento Celular/fisiología , Glioma/patología , Neuropilina-2/fisiología , Semaforina-3A/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/antagonistas & inhibidores , Neuropilina-1/genética , Neuropilina-1/inmunología , Neuropilina-1/metabolismo , Neuropilina-2/antagonistas & inhibidores , Ratas , Receptores de Superficie Celular/metabolismo , Semaforina-3A/genética , Transfección
10.
Mol Biol Cell ; 19(2): 646-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18045991

RESUMEN

Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.


Asunto(s)
Neuropilina-1/química , Neuropilina-1/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Centrifugación por Gradiente de Densidad , Chlorocebus aethiops , Dimerización , Conos de Crecimiento/efectos de los fármacos , Humanos , Ligandos , Ratones , Modelos Moleculares , Péptidos/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
11.
Eur J Neurosci ; 17(7): 1375-83, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12713640

RESUMEN

To help understand how the cortical map is set up during the early stages of corticogenesis, we have examined the developmental fate of embryonic day (E) 12 cortical progenitors in the rat. We have analysed the pattern of thalamic connections and cytoarchitectonic organization developed by progenitor cells removed at E12 from the presumptive parietal or occipital cortex and grafted into the parietal cortex of newborn hosts. Occipital progenitors grafted into the parietal cortex differentiated into neurons that developed reciprocal connections with the ventrobasal complex of the host thalamus. They could also form barrel-like structures, within which axons of the ventrobasal complex were distributed in dense patches. Some of these barrel-like structures were arranged in rows. Moreover, these progenitors failed to develop characteristic traits of occipital cortex cells as they did not establish connections with the dorsal lateral geniculate nucleus. We propose that cortical progenitors are not committed at E12 and, upon heterotopic transplantation, have the capacity to respond to local cues and to subsequently differentiate and maintain major phenotypic characteristics of neurons in their new environment. Only early progenitors are multipotent. By E13/E14, indeed, most cortical cells become irreversibly committed and upon heterotopic transplantation differentiate neurons with phenotypic characteristics of their cortical site of origin (Pinaudeau et al., 2000, Eur. J. Neurosci., 12, 2486-2496).


Asunto(s)
Trasplante de Tejido Encefálico , Trasplante de Tejido Fetal , Lóbulo Occipital/trasplante , Lóbulo Parietal/trasplante , Tálamo/trasplante , Trasplante Heterotópico , Animales , Animales Recién Nacidos , Estudios de Casos y Controles , Toxina del Cólera/metabolismo , Dextranos/metabolismo , Femenino , Feto , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/trasplante , Inmunohistoquímica , Masculino , Vías Nerviosas , Lóbulo Occipital/citología , Lóbulo Occipital/embriología , Lóbulo Parietal/citología , Lóbulo Parietal/embriología , Embarazo , Ratas , Tinción con Nitrato de Plata/métodos , Tálamo/citología , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA